TY - GEN
T1 - Ship detection by modified RetinaNet
AU - Wang, Yingying
AU - Li, Wei
AU - Li, Xiang
AU - Sun, Xu
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/10/8
Y1 - 2018/10/8
N2 - Ship detection in optical remote sensing imagery has been a hot topic in recent years and achieved promising performance. However, there are still several problems in detecting ships with various sizes. The key objective of all scales precise positioning is to obtain a high resolution feature map while having a high semantic characteristic information. Based on this idea, a modified RetinaNet (M-RetinaNet) is proposed to build dense connections between shallow and deep feature maps, which aims at solving problems resulting from different sizes of ships. It consists of a baseline residual network and a modified multi-scale network. The modified multi-scale network includes a top-down pathway and a bottom-up pathway, both of which build on the multi-scale base network. The benefits of this model are two folds: first, it can generate feature maps with high semantic information at each layer by introducing dense lateral connections from deep to shallow; second, it maintains high spatial resolution in deep layers. Comprehensive evaluations on a ship dataset and comparison with several state-of-the-art approaches demonstrate the effectiveness of the proposed network.
AB - Ship detection in optical remote sensing imagery has been a hot topic in recent years and achieved promising performance. However, there are still several problems in detecting ships with various sizes. The key objective of all scales precise positioning is to obtain a high resolution feature map while having a high semantic characteristic information. Based on this idea, a modified RetinaNet (M-RetinaNet) is proposed to build dense connections between shallow and deep feature maps, which aims at solving problems resulting from different sizes of ships. It consists of a baseline residual network and a modified multi-scale network. The modified multi-scale network includes a top-down pathway and a bottom-up pathway, both of which build on the multi-scale base network. The benefits of this model are two folds: first, it can generate feature maps with high semantic information at each layer by introducing dense lateral connections from deep to shallow; second, it maintains high spatial resolution in deep layers. Comprehensive evaluations on a ship dataset and comparison with several state-of-the-art approaches demonstrate the effectiveness of the proposed network.
KW - Convolutional neural network
KW - Multi-scale network
KW - Ship detection
UR - http://www.scopus.com/inward/record.url?scp=85056492667&partnerID=8YFLogxK
U2 - 10.1109/PRRS.2018.8486308
DO - 10.1109/PRRS.2018.8486308
M3 - Conference contribution
AN - SCOPUS:85056492667
T3 - 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018
BT - 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018
Y2 - 19 August 2018 through 20 August 2018
ER -