Ship detection by modified RetinaNet

Yingying Wang, Wei Li, Xiang Li, Xu Sun

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Citations (Scopus)

Abstract

Ship detection in optical remote sensing imagery has been a hot topic in recent years and achieved promising performance. However, there are still several problems in detecting ships with various sizes. The key objective of all scales precise positioning is to obtain a high resolution feature map while having a high semantic characteristic information. Based on this idea, a modified RetinaNet (M-RetinaNet) is proposed to build dense connections between shallow and deep feature maps, which aims at solving problems resulting from different sizes of ships. It consists of a baseline residual network and a modified multi-scale network. The modified multi-scale network includes a top-down pathway and a bottom-up pathway, both of which build on the multi-scale base network. The benefits of this model are two folds: first, it can generate feature maps with high semantic information at each layer by introducing dense lateral connections from deep to shallow; second, it maintains high spatial resolution in deep layers. Comprehensive evaluations on a ship dataset and comparison with several state-of-the-art approaches demonstrate the effectiveness of the proposed network.

Original languageEnglish
Title of host publication2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538684795
DOIs
Publication statusPublished - 8 Oct 2018
Externally publishedYes
Event10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018 - Beijing, China
Duration: 19 Aug 201820 Aug 2018

Publication series

Name2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018

Conference

Conference10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018
Country/TerritoryChina
CityBeijing
Period19/08/1820/08/18

Keywords

  • Convolutional neural network
  • Multi-scale network
  • Ship detection

Fingerprint

Dive into the research topics of 'Ship detection by modified RetinaNet'. Together they form a unique fingerprint.

Cite this