Abstract
Traditional microbial fuel cell based biosensor (MFC-Biosensor) utilizes bioanode as sensing element and delivers high sensitivity for single toxic shock but it fails to alert the combined shock of organic matter (OM)/toxic agent (TA). To address this limitation, this study developed a sequential flowing membrane-less MFC based biosensor (SMFC-Biosensor) using both bioanode and biocathode for toxicity monitoring. Results demonstrated the shocks of 1.5 mg/L Hg2+, 1.0 mg/L avermectin and 1.0 mg/L chlortetracycline hydrochloride to SMFC-Biosensor led to inhibition ratios of 36%, 15% and 9%, which were over twice higher than those of bioanode-based and biocathode-based MFC-Biosensors. The viabilities of anodic and cathodic biofilms were both inhibited by the toxic shock. Besides, the excessive organic matters caused a decay in the SMFC-Biosensor current and consequently the OM/TA combined shock could be successfully monitored. This study for the first time testified the feasibility of simultaneously using bioanode and biocathode as sensing elements for toxicity monitoring.
Original language | English |
---|---|
Pages (from-to) | 276-280 |
Number of pages | 5 |
Journal | Bioresource Technology |
Volume | 276 |
DOIs | |
Publication status | Published - Mar 2019 |
Externally published | Yes |
Keywords
- Biocathode
- Membrane-less
- Microbial fuel cell
- Sensitivity
- Toxicity