TY - CONF
T1 - Semi-supervised Active Learning for Instance Segmentation via Scoring Predictions
AU - Wang, Jun
AU - Wen, Shaoguo
AU - Chen, Kaixing
AU - Yu, Jianghua
AU - Zhou, Xin
AU - Gao, Peng
AU - Li, Changsheng
AU - Xie, Guotong
N1 - Publisher Copyright:
© 2020. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms.
PY - 2020
Y1 - 2020
N2 - Active learning generally involves querying the most representative samples for human labeling, which has been widely studied in many fields such as image classification and object detection. However, its potential has not been explored in the more complex instance segmentation task that usually has relatively higher annotation cost. In this paper, we propose a novel and principled semi-supervised active learning framework for instance segmentation. Specifically, we present an uncertainty sampling strategy named Triplet Scoring Predictions (TSP) to explicitly incorporate samples ranking clues from classes, bounding boxes and masks. Moreover, we devise a progressive pseudo labeling regime using the above TSP in semi-supervised manner, it can leverage both the labeled and unlabeled data to minimize labeling effort while maximize performance of instance segmentation. Results on medical images datasets demonstrate that the proposed method results in the embodiment of knowledge from available data in a meaningful way. The extensive quantitatively and qualitatively experiments show that, our method can yield the best-performing model with notable less annotation costs, compared with state-of-the-arts.
AB - Active learning generally involves querying the most representative samples for human labeling, which has been widely studied in many fields such as image classification and object detection. However, its potential has not been explored in the more complex instance segmentation task that usually has relatively higher annotation cost. In this paper, we propose a novel and principled semi-supervised active learning framework for instance segmentation. Specifically, we present an uncertainty sampling strategy named Triplet Scoring Predictions (TSP) to explicitly incorporate samples ranking clues from classes, bounding boxes and masks. Moreover, we devise a progressive pseudo labeling regime using the above TSP in semi-supervised manner, it can leverage both the labeled and unlabeled data to minimize labeling effort while maximize performance of instance segmentation. Results on medical images datasets demonstrate that the proposed method results in the embodiment of knowledge from available data in a meaningful way. The extensive quantitatively and qualitatively experiments show that, our method can yield the best-performing model with notable less annotation costs, compared with state-of-the-arts.
UR - http://www.scopus.com/inward/record.url?scp=85126087228&partnerID=8YFLogxK
M3 - Paper
AN - SCOPUS:85126087228
T2 - 31st British Machine Vision Conference, BMVC 2020
Y2 - 7 September 2020 through 10 September 2020
ER -