Abstract
Structural and mechanical properties of self-assembled metal-free naphthalocyanine (H2Nc) films on a Ag(111) surface are studied. Six self-assembled domains are observed by scanning tunneling microscopy (STM). Combining the high-resolution STM images and density functional theory (DFT) based calculations, we found that molecules adsorbed flatly on the substrate by forming six different interlocked square-like unit cells with different lattice parameters. DFT calculations indicated comparable adsorption energies for all the configurations. Six domains with different lattice parameters present different strain states, giving us a possibility to evaluate the Young's modulus of the metal-free naphthalocyanine films on the Ag(111) surface. We found that the Young's modulus of H2Nc is comparable to those of typical conjugated organic-molecule-based crystals (e.g., naphthalene), providing useful information for future applications when the elastic properties should be concerned.
Original language | English |
---|---|
Pages (from-to) | 8208-8212 |
Number of pages | 5 |
Journal | Journal of Physical Chemistry C |
Volume | 119 |
Issue number | 15 |
DOIs | |
Publication status | Published - 16 Apr 2015 |
Externally published | Yes |