Abstract
Quercetin (QCT) has important functions such as antioxidant, anti-inflammatory and anticancer. However, its applications in food and in drug are restricted owing to its poor water solubility. In this work, a novel amphiphilic wall-material chitosan was synthesized via grafting of chitosan with deoxycholic acid (DA) as hydrophobic group and modified N-acetyl-L-cysteine (NAC) as hydrophilic group. Amphiphilic chitosan was self-assembled to load QCT as nanomicelles by a low-cost and inorganic solvent procedure. Both the encapsulation efficiencies (EE) and drug-loading rates (DL) increased when increasing the grafting rate of DA. There was a bursting release of QCT for the QCT-loaded nanomicelles (CS-DA-NAC-QNMs) from 0 to 8 h, and then the release rate decreased gradually. After releasing for 72 h, the final cumulative release percentages were more than 40%. All the QCT-loaded nanomicelles samples showed good hemocompatibility, and their water solubility and biocompatibility increased evidently. What's more, they exhibited an obvious inhibition rate of A549 cells.
Original language | English |
---|---|
Pages (from-to) | 519-526 |
Number of pages | 8 |
Journal | Colloids and Surfaces B: Biointerfaces |
Volume | 179 |
DOIs | |
Publication status | Published - 1 Jul 2019 |
Keywords
- Amphiphilic chitosan
- Efficient delivery
- Nanomicelles
- Quercetin
- Self-assembled