TY - GEN
T1 - See Your Emotion from Gait Using Unlabeled Skeleton Data
AU - Lu, Haifeng
AU - Hu, Xiping
AU - Hu, Bin
N1 - Publisher Copyright:
Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org).
PY - 2023/6/27
Y1 - 2023/6/27
N2 - This paper focuses on contrastive learning for gait-based emotion recognition. The existing contrastive learning approaches are rarely suitable for learning skeleton-based gait representations, which suffer from limited gait diversity and inconsistent semantics. In this paper, we propose a Cross-coordinate contrastive learning framework utilizing Ambiguity samples for self-supervised Gait-based Emotion representation (CAGE). First, we propose ambiguity transform to push positive samples into ambiguous semantic space. By learning similarities between ambiguity samples and positive samples, our model can learn higher-level semantics of the gait sequences and maintain semantic diversity. Second, to encourage learning the semantic invariance, we uniquely propose cross-coordinate contrastive learning between the Cartesian coordinate and the Spherical coordinate, which brings rich supervisory signals to learn the intrinsic semantic consistency information. Exhaustive experiments show that CAGE improves existing self-supervised methods by 5%–10% accuracy, and it achieves comparable or even superior performance to supervised methods.
AB - This paper focuses on contrastive learning for gait-based emotion recognition. The existing contrastive learning approaches are rarely suitable for learning skeleton-based gait representations, which suffer from limited gait diversity and inconsistent semantics. In this paper, we propose a Cross-coordinate contrastive learning framework utilizing Ambiguity samples for self-supervised Gait-based Emotion representation (CAGE). First, we propose ambiguity transform to push positive samples into ambiguous semantic space. By learning similarities between ambiguity samples and positive samples, our model can learn higher-level semantics of the gait sequences and maintain semantic diversity. Second, to encourage learning the semantic invariance, we uniquely propose cross-coordinate contrastive learning between the Cartesian coordinate and the Spherical coordinate, which brings rich supervisory signals to learn the intrinsic semantic consistency information. Exhaustive experiments show that CAGE improves existing self-supervised methods by 5%–10% accuracy, and it achieves comparable or even superior performance to supervised methods.
UR - http://www.scopus.com/inward/record.url?scp=85167695026&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85167695026
T3 - Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
SP - 1826
EP - 1834
BT - AAAI-23 Technical Tracks 2
A2 - Williams, Brian
A2 - Chen, Yiling
A2 - Neville, Jennifer
PB - AAAI press
T2 - 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Y2 - 7 February 2023 through 14 February 2023
ER -