Scalable and Effective Conductance-Based Graph Clustering

Longlong Lin, Rong Hua Li, Tao Jia

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Citations (Scopus)

Abstract

Conductance-based graph clustering has been recognized as a fundamental operator in numerous graph analysis applications. Despite the significant success of conductance-based graph clustering, existing algorithms are either hard to obtain satisfactory clustering qualities, or have high time and space complexity to achieve provable clustering qualities. To overcome these limitations, we devise a powerful peeling-based graph clustering framework PCon. We show that many existing solutions can be reduced to our framework. Namely, they first define a score function for each vertex, then iteratively remove the vertex with the smallest score. Finally, they output the result with the smallest conductance during the peeling process. Based on our framework, we propose two novel algorithms PCon core and PCon de with linear time and space complexity, which can efficiently and effectively identify clusters from massive graphs with more than a few billion edges. Surprisingly, we prove that PCon de can identify clusters with near-constant approximation ratio, resulting in an important theoretical improvement over the well-known quadratic Cheeger bound. Empirical results on real-life and synthetic datasets show that our algorithms can achieve 5∼42 times speedup with a high clustering accuracy, while using 1.4∼7.8 times less memory than the baseline algorithms.

Original languageEnglish
Title of host publicationAAAI-23 Technical Tracks 4
EditorsBrian Williams, Yiling Chen, Jennifer Neville
PublisherAAAI press
Pages4471-4478
Number of pages8
ISBN (Electronic)9781577358800
Publication statusPublished - 27 Jun 2023
Event37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, United States
Duration: 7 Feb 202314 Feb 2023

Publication series

NameProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Volume37

Conference

Conference37th AAAI Conference on Artificial Intelligence, AAAI 2023
Country/TerritoryUnited States
CityWashington
Period7/02/2314/02/23

Fingerprint

Dive into the research topics of 'Scalable and Effective Conductance-Based Graph Clustering'. Together they form a unique fingerprint.

Cite this