RSGNN: A Model-agnostic Approach for Enhancing the Robustness of Signed Graph Neural Networks

Zeyu Zhang, Jiamou Liu*, Xianda Zheng, Yifei Wang, Pengqian Han, Yupan Wang, Kaiqi Zhao, Zijian Zhang*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Citations (Scopus)

Abstract

Signed graphs model complex relations using both positive and negative edges. Signed graph neural networks (SGNN) are powerful tools to analyze signed graphs. We address the vulnerability of SGNN to potential edge noise in the input graph. Our goal is to strengthen existing SGNN allowing them to withstand edge noises by extracting robust representations for signed graphs. First, we analyze the expressiveness of SGNN using an extended Weisfeiler-Lehman (WL) graph isomorphism test and identify the limitations to SGNN over triangles that are unbalanced. Then, we design some structure-based regularizers to be used in conjunction with an SGNN that highlight intrinsic properties of a signed graph. The tools and insights above allow us to propose a novel framework, Robust Signed Graph Neural Network (RSGNN), which adopts a dual architecture that simultaneously denoises the graph while learning node representations. We validate the performance of our model empirically on four real-world signed graph datasets, i.e., Bitcoin_OTC, Bitcoin_Alpha, Epinion and Slashdot, RSGNN can clearly improve the robustness of popular SGNN models. When the signed graphs are affected by random noise, our method outperforms baselines by up to 9.35% Binary-F1 for link sign prediction. Our implementation is available in PyTorch1.

Original languageEnglish
Title of host publicationACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023
PublisherAssociation for Computing Machinery, Inc
Pages60-70
Number of pages11
ISBN (Electronic)9781450394161
DOIs
Publication statusPublished - 30 Apr 2023
Event2023 World Wide Web Conference, WWW 2023 - Austin, United States
Duration: 30 Apr 20234 May 2023

Publication series

NameACM Web Conference 2023 - Proceedings of the World Wide Web Conference, WWW 2023

Conference

Conference2023 World Wide Web Conference, WWW 2023
Country/TerritoryUnited States
CityAustin
Period30/04/234/05/23

Keywords

  • Robustness
  • Signed Graph
  • Signed Graph Neural Networks

Fingerprint

Dive into the research topics of 'RSGNN: A Model-agnostic Approach for Enhancing the Robustness of Signed Graph Neural Networks'. Together they form a unique fingerprint.

Cite this