Room temperature ferromagnetism and antiferromagnetism in two-dimensional iron arsenides

Yalong Jiao, Weikang Wu, Fengxian Ma, Zhi Ming Yu, Yunhao Lu, Xian Lei Sheng*, Yunwei Zhang, Shengyuan A. Yang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

The discovery of two-dimensional (2D) magnetic materials with high critical temperature and intrinsic magnetic properties has attracted significant research interest. By using swarm-intelligence structure search and first-principles calculations, we predict three 2D iron arsenide monolayers (denoted as FeAs-I, II and III) with good energetic and dynamical stabilities. We find that FeAs-I and II are ferromagnets, while FeAs-III is an antiferromagnet. FeAs-I and III have sizable magnetic anisotropy comparable to the magnetic recording materials such as the FeCo alloy. Importantly, we show that FeAs-I and III have critical temperatures of 645 K and 350 K, respectively, which are above room temperature. In addition, FeAs-I and II are metallic, while FeAs-III is semiconducting with a gap comparable to Si. For FeAs-III, there exist two pairs of 2D antiferromagnetic Dirac points below the Fermi level, and it displays a giant magneto band-structure effect. The superior magnetic and electronic properties of the FeAs monolayers make them promising candidates for spintronics applications.

Original languageEnglish
Pages (from-to)16508-16514
Number of pages7
JournalNanoscale
Volume11
Issue number35
DOIs
Publication statusPublished - 21 Sept 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Room temperature ferromagnetism and antiferromagnetism in two-dimensional iron arsenides'. Together they form a unique fingerprint.

Cite this