Abstract
The discovery of ferromagnetism in two-dimensional (2D) van der Waals crystals has generated widespread interest. The seeking of robust 2D ferromagnets with high Curie temperature (Tc) is vitally important for next-generation spintronic devices. However, owing to the enhanced spin fluctuation and weak exchange interaction upon the reduced dimensionalities, the exploring of robust 2D ferromagnets with Tc > 300 K is highly demanded but remains challenging. In this work, we fabricated air-stable 2D Cr5Te8/CrTe2 vertical heterojunctions with Tc above 400 K by the chemical vapor deposition method. Transmission electron microscopy demonstrates a high-quality-crystalline epitaxial structure between tri-Cr5Te8 and 1T-CrTe2 with striped moiré patterns and a superior ambient stability over six months. A built-in dual-axis strain together with strong interfacial coupling cooperatively leads to a record-high Tc for the CrxTey family. A temperature-dependent spin-flip process induces the easy axis of magnetization to rotate from the out-of-plane to the in-plane direction, indicating a phase-dependent proximity coupling effect, rationally interpreted by first-principles calculations of the magnetic anisotropy of a tri-Cr5Te8 and 1T-CrTe2 monolayer. Our results provide a material realization of effectively enhancing the transition temperature of 2D ferromagnetism and manipulating the spin-flip of the easy axis, which will facilitate future spintronic applications.
Original language | English |
---|---|
Pages (from-to) | 23160-23168 |
Number of pages | 9 |
Journal | ACS Nano |
Volume | 17 |
Issue number | 22 |
DOIs | |
Publication status | Published - 28 Nov 2023 |
Externally published | Yes |
Keywords
- 2D ferromagnetism
- CrTe2
- magnetic anisotropy
- proximity coupling
- van der Waals heterostructure