TY - JOUR
T1 - RNE
T2 - computing shortest paths using road network embedding
AU - Zhao, Tianyu
AU - Huang, Shuai
AU - Wang, Yong
AU - Chai, Chengliang
AU - Li, Guoliang
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2022/5
Y1 - 2022/5
N2 - Computing the shortest paths and shortest path distances between two vertices on road networks is a core operation in many real-world applications, e.g., finding the closest taxi/hotel. However, existing techniques have several limitations. First, traditional Dijkstra-based methods have long latency and cannot meet the high-performance requirement. Second, existing indexing-based methods either involve huge index sizes or have poor performance. To address these limitations, in this paper we propose a learning-based method RNE which can efficiently compute an approximate shortest-path distance such that (1) the performance is super fast, e.g., taking 60–150 nanoseconds; (2) the error ratio of the approximate results is super small, e.g., below 0.7%; (3) scales well to large road networks, e.g., millions of nodes. The key idea is to first embed the road networks into a low dimensional space for capturing the distance relations between vertices, get an embedded vector for each vertex, and then perform a distance metric (L1 metric) on the embedded vectors to approximate shortest-path distances. We propose a hierarchical model to represent the embedding, and design an effective method to train the model. We also design a fine-tuning method to judiciously select high-quality training data. In order to identify the shortest path between two vertices (not just the distance), we extend the vertex embedding from RNE and design the RNE+ model, which can output the approximate shortest path with low error and high efficiency. We also propose effective techniques to accelerate the training process of RNE+, including embedding pre-training, negative sampling and model fine-tuning. Extensive experiments on real-world datasets show that RNE and RNE+ significantly outperform the state-of-the-art methods.
AB - Computing the shortest paths and shortest path distances between two vertices on road networks is a core operation in many real-world applications, e.g., finding the closest taxi/hotel. However, existing techniques have several limitations. First, traditional Dijkstra-based methods have long latency and cannot meet the high-performance requirement. Second, existing indexing-based methods either involve huge index sizes or have poor performance. To address these limitations, in this paper we propose a learning-based method RNE which can efficiently compute an approximate shortest-path distance such that (1) the performance is super fast, e.g., taking 60–150 nanoseconds; (2) the error ratio of the approximate results is super small, e.g., below 0.7%; (3) scales well to large road networks, e.g., millions of nodes. The key idea is to first embed the road networks into a low dimensional space for capturing the distance relations between vertices, get an embedded vector for each vertex, and then perform a distance metric (L1 metric) on the embedded vectors to approximate shortest-path distances. We propose a hierarchical model to represent the embedding, and design an effective method to train the model. We also design a fine-tuning method to judiciously select high-quality training data. In order to identify the shortest path between two vertices (not just the distance), we extend the vertex embedding from RNE and design the RNE+ model, which can output the approximate shortest path with low error and high efficiency. We also propose effective techniques to accelerate the training process of RNE+, including embedding pre-training, negative sampling and model fine-tuning. Extensive experiments on real-world datasets show that RNE and RNE+ significantly outperform the state-of-the-art methods.
KW - Graph embedding
KW - Road network
KW - Shortest path
UR - http://www.scopus.com/inward/record.url?scp=85118373243&partnerID=8YFLogxK
U2 - 10.1007/s00778-021-00705-1
DO - 10.1007/s00778-021-00705-1
M3 - Article
AN - SCOPUS:85118373243
SN - 1066-8888
VL - 31
SP - 507
EP - 528
JO - VLDB Journal
JF - VLDB Journal
IS - 3
ER -