Ricci curvature of double manifolds via isoparametric foliations

Chia Kuei Peng, Chao Qian*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Given a closed manifold M and a vector bundle ξ of rank n over M, by gluing two copies of the disc bundle of ξ, we can obtain a closed manifold D(ξ,M), the so-called double manifold. In this paper, we firstly prove that each sphere bundle Sr(ξ) of radius r>0 is an isoparametric hypersurface in the total space of ξ equipped with a connection metric, and for r>0 small enough, the induced metric of Sr(ξ) has positive Ricci curvature under the additional assumptions that M has a metric with positive Ricci curvature and n≥3. As an application, if M admits a metric with positive Ricci curvature and n≥2, then we construct a metric with positive Ricci curvature on D(ξ,M). Moreover, under the same metric, D(ξ,M) admits a natural isoparametric foliation. For a compact minimal isoparametric hypersurface Yn in Sn+1(1), which separates Sn+1(1) into S+n+1 and Sn+1, one can get double manifolds D(S+n+1) and D(Sn+1). Inspired by Tang, Xie and Yan's work on scalar curvature of such manifolds with isoparametric foliations (cf. [25]), we study Ricci curvature of them with isoparametric foliations in the last part.

Original languageEnglish
Pages (from-to)469-480
Number of pages12
JournalAdvances in Mathematics
Volume311
DOIs
Publication statusPublished - 30 Apr 2017

Keywords

  • Double manifold
  • Isoparametric foliation
  • Ricci curvature
  • Sphere bundle
  • Vector bundle

Fingerprint

Dive into the research topics of 'Ricci curvature of double manifolds via isoparametric foliations'. Together they form a unique fingerprint.

Cite this