Residual invertible spatio-temporal network for video super-resolution

Xiaobin Zhu, Zhuangzi Li, Xiao Yu Zhang, Changsheng Li, Yaqi Liu, Ziyu Xue

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

64 Citations (Scopus)

Abstract

Video super-resolution is a challenging task, which has attracted great attention in research and industry communities. In this paper, we propose a novel end-to-end architecture, called Residual Invertible Spatio-Temporal Network (RISTN) for video super-resolution. The RISTN can sufficiently exploit the spatial information from low-resolution to high-resolution, and effectively models the temporal consistency from consecutive video frames. Compared with existing recurrent convolutional network based approaches, RISTN is much deeper but more efficient. It consists of three major components: In the spatial component, a lightweight residual invertible block is designed to reduce information loss during feature transformation and provide robust feature representations. In the temporal component, a novel recurrent convolutional model with residual dense connections is proposed to construct deeper network and avoid feature degradation. In the reconstruction component, a new fusion method based on the sparse strategy is proposed to integrate the spatial and temporal features. Experiments on public benchmark datasets demonstrate that RISTN outperforms the state-of-the-art methods.

Original languageEnglish
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI press
Pages5981-5988
Number of pages8
ISBN (Electronic)9781577358091
Publication statusPublished - 2019
Externally publishedYes
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: 27 Jan 20191 Feb 2019

Publication series

Name33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Country/TerritoryUnited States
CityHonolulu
Period27/01/191/02/19

Fingerprint

Dive into the research topics of 'Residual invertible spatio-temporal network for video super-resolution'. Together they form a unique fingerprint.

Cite this