TY - JOUR
T1 - Residual Hyperbolic Graph Convolution Networks
AU - Xue, Yangkai
AU - Dai, Jindou
AU - Lu, Zhipeng
AU - Wu, Yuwei
AU - Jia, Yunde
N1 - Publisher Copyright:
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - Hyperbolic graph convolutional networks (HGCNs) have demonstrated representational capabilities of modeling hierarchical-structured graphs. However, as in general GCNs, over-smoothing may occur as the number of model layers increases, limiting the representation capabilities of most current HGCN models. In this paper, we propose residual hyperbolic graph convolutional networks (R-HGCNs) to address the over-smoothing problem. We introduce a hyperbolic residual connection function to overcome the over-smoothing problem, and also theoretically prove the effectiveness of the hyperbolic residual function. Moreover, we use product manifolds and HyperDrop to facilitate the R-HGCNs. The distinctive features of the R-HGCNs are as follows: (1) The hyperbolic residual connection preserves the initial node information in each layer and adds a hyperbolic identity mapping to prevent node features from being indistinguishable. (2) Product manifolds in R-HGCNs have been set up with different origin points in different components to facilitate the extraction of feature information from a wider range of perspectives, which enhances the representing capability of R-HGCNs. (3) HyperDrop adds multiplicative Gaussian noise into hyperbolic representations, such that perturbations can be added to alleviate the over-fitting problem without deconstructing the hyperbolic geometry. Experiment results demonstrate the effectiveness of R-HGCNs under various graph convolution layers and different structures of product manifolds.
AB - Hyperbolic graph convolutional networks (HGCNs) have demonstrated representational capabilities of modeling hierarchical-structured graphs. However, as in general GCNs, over-smoothing may occur as the number of model layers increases, limiting the representation capabilities of most current HGCN models. In this paper, we propose residual hyperbolic graph convolutional networks (R-HGCNs) to address the over-smoothing problem. We introduce a hyperbolic residual connection function to overcome the over-smoothing problem, and also theoretically prove the effectiveness of the hyperbolic residual function. Moreover, we use product manifolds and HyperDrop to facilitate the R-HGCNs. The distinctive features of the R-HGCNs are as follows: (1) The hyperbolic residual connection preserves the initial node information in each layer and adds a hyperbolic identity mapping to prevent node features from being indistinguishable. (2) Product manifolds in R-HGCNs have been set up with different origin points in different components to facilitate the extraction of feature information from a wider range of perspectives, which enhances the representing capability of R-HGCNs. (3) HyperDrop adds multiplicative Gaussian noise into hyperbolic representations, such that perturbations can be added to alleviate the over-fitting problem without deconstructing the hyperbolic geometry. Experiment results demonstrate the effectiveness of R-HGCNs under various graph convolution layers and different structures of product manifolds.
UR - http://www.scopus.com/inward/record.url?scp=85189556049&partnerID=8YFLogxK
U2 - 10.1609/aaai.v38i15.29559
DO - 10.1609/aaai.v38i15.29559
M3 - Conference article
AN - SCOPUS:85189556049
SN - 2159-5399
VL - 38
SP - 16247
EP - 16254
JO - Proceedings of the AAAI Conference on Artificial Intelligence
JF - Proceedings of the AAAI Conference on Artificial Intelligence
IS - 15
T2 - 38th AAAI Conference on Artificial Intelligence, AAAI 2024
Y2 - 20 February 2024 through 27 February 2024
ER -