TY - JOUR
T1 - Research Progress of Solid Electrolyte Interphase in Lithium Batteries
AU - Yang, Yi
AU - Yan, Chong
AU - Huang, Jiaqi
N1 - Publisher Copyright:
© Editorial office of Acta Physico-Chimica Sinica.
PY - 2021/11/15
Y1 - 2021/11/15
N2 - Since their commercialization in 1991, lithium-ion batteries (LIBs), one of the greatest inventions in history, have profoundly reshaped lifestyles owing to their high energy density, long lifespan, and reliable and safe operation. The ever-increasing use of portable electronics, electric vehicles, and large-scale energy storage has consistently promoted the development of LIBs with higher energy density, reliable and safe operation, faster charging, and lower cost. To meet these stringent requirements, researchers have developed advanced electrode materials and electrolytes, wherein the electrode materials play a key role in improving the energy density of the battery and electrolytes play an important role in enhancing the cycling stability of batteries. In addition, further improvements in the current LIBs and reviving lithium metal batteries have received intensive interest. The electrode/electrolyte interface is formed on the electrode surface during the initial charging/discharging stage, whose ionic conductivity and electronic insulation ensure rapid transport of lithium ions and isolating the unsolicited side reactions caused by electrons, respectively. In a working battery, the stability or properties of the interface play a crucial role in maintaining the integrity of the electrode structure, thereby stabilizing the cycling performance and prolonging the service lifespan to meet the sustainable energy demand for the public. Generally, the interface formed on the anode and cathode is called the solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) respectively, and SEI and CEI are collectively known as the electrode electrolyte interphase. Research on SEI has made remarkable progress; however, the structure, component, and accurate regulation strategy of SEI are still at the initial stage due to the stability and complexity of SEI and the limited research methods at the nanoscale. To improve the performance and lifespan of working batteries, the formation, evolution, and modification of the interface should be paid particular attention. Herein, the latest researches focused on the SEI are reviewed, including the formation mechanism, which discusses two key factors affecting the formation of the electrode/electrolyte film, i.e., the ion characteristic adsorption on the electrode surface and the solvated coordinate structure, evolution, and description that contains the interface layer structure, wherein the mosaic model and the layered structure are the two mainstream views of the SEI structure, and the chemical composition of SEI as well as the possible conduction mechanism of lithium ions, including desolvation and subsequent diffusion across the polycrystalline SEI. The regulation strategies of the interface layer are discussed in detail, and the future prospects of SEI are presented.
AB - Since their commercialization in 1991, lithium-ion batteries (LIBs), one of the greatest inventions in history, have profoundly reshaped lifestyles owing to their high energy density, long lifespan, and reliable and safe operation. The ever-increasing use of portable electronics, electric vehicles, and large-scale energy storage has consistently promoted the development of LIBs with higher energy density, reliable and safe operation, faster charging, and lower cost. To meet these stringent requirements, researchers have developed advanced electrode materials and electrolytes, wherein the electrode materials play a key role in improving the energy density of the battery and electrolytes play an important role in enhancing the cycling stability of batteries. In addition, further improvements in the current LIBs and reviving lithium metal batteries have received intensive interest. The electrode/electrolyte interface is formed on the electrode surface during the initial charging/discharging stage, whose ionic conductivity and electronic insulation ensure rapid transport of lithium ions and isolating the unsolicited side reactions caused by electrons, respectively. In a working battery, the stability or properties of the interface play a crucial role in maintaining the integrity of the electrode structure, thereby stabilizing the cycling performance and prolonging the service lifespan to meet the sustainable energy demand for the public. Generally, the interface formed on the anode and cathode is called the solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) respectively, and SEI and CEI are collectively known as the electrode electrolyte interphase. Research on SEI has made remarkable progress; however, the structure, component, and accurate regulation strategy of SEI are still at the initial stage due to the stability and complexity of SEI and the limited research methods at the nanoscale. To improve the performance and lifespan of working batteries, the formation, evolution, and modification of the interface should be paid particular attention. Herein, the latest researches focused on the SEI are reviewed, including the formation mechanism, which discusses two key factors affecting the formation of the electrode/electrolyte film, i.e., the ion characteristic adsorption on the electrode surface and the solvated coordinate structure, evolution, and description that contains the interface layer structure, wherein the mosaic model and the layered structure are the two mainstream views of the SEI structure, and the chemical composition of SEI as well as the possible conduction mechanism of lithium ions, including desolvation and subsequent diffusion across the polycrystalline SEI. The regulation strategies of the interface layer are discussed in detail, and the future prospects of SEI are presented.
KW - Artificial SEI
KW - Formation mechanism
KW - Lithium battery
KW - Solid electrolyte interphase
KW - Solvation structure
UR - http://www.scopus.com/inward/record.url?scp=85112061161&partnerID=8YFLogxK
U2 - 10.3866/PKU.WHXB202010076
DO - 10.3866/PKU.WHXB202010076
M3 - Review article
AN - SCOPUS:85112061161
SN - 1000-6818
VL - 37
JO - Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica
JF - Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica
IS - 11
M1 - 2010076
ER -