TY - JOUR
T1 - Reliable closed-loop supply chain design problem under facility-type-dependent probabilistic disruptions
AU - Zhang, Yanzi
AU - Diabat, Ali
AU - Zhang, Zhi Hai
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/4
Y1 - 2021/4
N2 - Closed-loop supply chains (CLSCs) have received considerable attention because of various economic and regulatory factors. A CLSC is characterized by more complicated network structures and higher uncertainties compared to traditional supply chain networks. Therefore, reliable CLSCs are being increasingly emphasized in academic circles due to the vast impacts of disruptions such as natural disasters and terrorist attacks. This paper studies a reliable location-inventory problem in a CLSC considering the mutual effects between failures of forward and reverse distribution centers (DCs) when they are co-located. The disruption probability of a co-located forward DC is different from that of a standalone forward DC, i.e., probabilistic disruptions are dependent on facility type. The problem is formulated as a nonconvex mixed-integer programming problem. A decomposition approach based on the outer approximation (DOA) algorithm is proposed to address the resulting model. The algorithm alternately solves relaxed master problems (mixed-integer linear programs, MILPs) and two nonlinear programming (NLPs) problems. Extensive numerical experiments are conducted to evaluate the performance of the proposed solution approach, after which managerial insights are explored.
AB - Closed-loop supply chains (CLSCs) have received considerable attention because of various economic and regulatory factors. A CLSC is characterized by more complicated network structures and higher uncertainties compared to traditional supply chain networks. Therefore, reliable CLSCs are being increasingly emphasized in academic circles due to the vast impacts of disruptions such as natural disasters and terrorist attacks. This paper studies a reliable location-inventory problem in a CLSC considering the mutual effects between failures of forward and reverse distribution centers (DCs) when they are co-located. The disruption probability of a co-located forward DC is different from that of a standalone forward DC, i.e., probabilistic disruptions are dependent on facility type. The problem is formulated as a nonconvex mixed-integer programming problem. A decomposition approach based on the outer approximation (DOA) algorithm is proposed to address the resulting model. The algorithm alternately solves relaxed master problems (mixed-integer linear programs, MILPs) and two nonlinear programming (NLPs) problems. Extensive numerical experiments are conducted to evaluate the performance of the proposed solution approach, after which managerial insights are explored.
KW - Closed-loop supply chain
KW - Nonconvex optimization
KW - Outer approximation
KW - Reliable location-inventory problem
UR - http://www.scopus.com/inward/record.url?scp=85102078084&partnerID=8YFLogxK
U2 - 10.1016/j.trb.2021.02.009
DO - 10.1016/j.trb.2021.02.009
M3 - Article
AN - SCOPUS:85102078084
SN - 0191-2615
VL - 146
SP - 180
EP - 209
JO - Transportation Research Part B: Methodological
JF - Transportation Research Part B: Methodological
ER -