Reinforcement-learning-based path planning for UAVs in intensive obstacle environment

Miao Guo, Teng Long, Hui Li, Jingliang Sun

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

In intensive obstacle environment, the available flying space is narrow, which makes it difficult to generate feasible path for UAVs within limited runtime. In this paper, a Q-learning-based planning algorithm is presented to improve the efficiency of single UAV path planning in intensive obstacle environment. By constructing the space-action state offline learning planning architecture, the proposed method realizes the rapid path planning of UAV, and solves the high time-consuming problem of reinforcement learning online path planning. Considering the time-consuming problem of Q-table re-training, a probabilistic local update mechanism is proposed by updating the Q-value of the states to reduce the high time-consuming of Q-table re-raining and realize the rapid update of Q-table. The probability of Q-value updating is up to the distance to the new obstacle. The closer the state is to the new obstacle, the higher its probability of re-training. Therefore, the flight trajectory can be quickly re-planned when the environment changes. Simulation results show that the proposed Q-learning-based planning algorithm can generate path for UAV from random start position and avoid the obstacles. Compared with the classical A* algorithm, the path planning time based on the trained Q table can be reduced from second to millisecond, which significantly improves the efficiency of path planning.

Original languageEnglish
Title of host publicationProceeding - 2021 China Automation Congress, CAC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6451-6455
Number of pages5
ISBN (Electronic)9781665426473
DOIs
Publication statusPublished - 2021
Event2021 China Automation Congress, CAC 2021 - Beijing, China
Duration: 22 Oct 202124 Oct 2021

Publication series

NameProceeding - 2021 China Automation Congress, CAC 2021

Conference

Conference2021 China Automation Congress, CAC 2021
Country/TerritoryChina
CityBeijing
Period22/10/2124/10/21

Keywords

  • Q-learning
  • UAV
  • offline training
  • path planning
  • probabilistic local update mechanism
  • reinforcement learning

Fingerprint

Dive into the research topics of 'Reinforcement-learning-based path planning for UAVs in intensive obstacle environment'. Together they form a unique fingerprint.

Cite this