TY - GEN
T1 - Region focus network for joint optic disc and cup segmentation
AU - Li, Ge
AU - Li, Changsheng
AU - Zeng, Chan
AU - Gao, Peng
AU - Xie, Guotong
N1 - Publisher Copyright:
Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2020
Y1 - 2020
N2 - Glaucoma is one of the three leading causes of blindness in the world and is predicted to affect around 80 million people by 2020. The optic cup (OC) to optic disc (OD) ratio (CDR) in fundus images plays a pivotal role in the screening and diagnosis of glaucoma. Existing methods usually crop the optic disc region first, and subsequently perform segmentation in this region. However, these approaches come up with high complexities due to the separate operations. To remedy this issue, we propose a Region Focus Network (RF-Net) that innovatively integrates detection and multi-class segmentation into a unified architecture for end-to-end joint optic disc and cup segmentation with global optimization. The key idea of our method is designing a novel multi-class mask branch which generates a high-quality segmentation in the detected region for both disc and cup. To bridge the connection between the backbone and multi-class mask branch, a Fusion Feature Pooling (FFP) structure is presented to extract features from each level of the pyramid network and fuse them into a final feature representation for segmentation. Extensive experimental results on the REFUGE-2018 challenge dataset and the Drishti-GS dataset show that the proposed method achieves the best performance, compared with competitive approaches reported in the literature and the official leader-board. Our code will be released soon.
AB - Glaucoma is one of the three leading causes of blindness in the world and is predicted to affect around 80 million people by 2020. The optic cup (OC) to optic disc (OD) ratio (CDR) in fundus images plays a pivotal role in the screening and diagnosis of glaucoma. Existing methods usually crop the optic disc region first, and subsequently perform segmentation in this region. However, these approaches come up with high complexities due to the separate operations. To remedy this issue, we propose a Region Focus Network (RF-Net) that innovatively integrates detection and multi-class segmentation into a unified architecture for end-to-end joint optic disc and cup segmentation with global optimization. The key idea of our method is designing a novel multi-class mask branch which generates a high-quality segmentation in the detected region for both disc and cup. To bridge the connection between the backbone and multi-class mask branch, a Fusion Feature Pooling (FFP) structure is presented to extract features from each level of the pyramid network and fuse them into a final feature representation for segmentation. Extensive experimental results on the REFUGE-2018 challenge dataset and the Drishti-GS dataset show that the proposed method achieves the best performance, compared with competitive approaches reported in the literature and the official leader-board. Our code will be released soon.
UR - http://www.scopus.com/inward/record.url?scp=85105996669&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85105996669
T3 - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
SP - 751
EP - 758
BT - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PB - AAAI press
T2 - 34th AAAI Conference on Artificial Intelligence, AAAI 2020
Y2 - 7 February 2020 through 12 February 2020
ER -