Reduced-state MLSE for an IM/DD system using PAM modulation

Yukui Yu, Yi Che, Tianwai Bo, Daeho Kim, Hoon Kim*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)

Abstract

The performance of a high-speed intensity-modulation (IM)/direct-detection (DD) transmission system could be limited by the bandwidth of optical transceivers. One popular way to cope with this performance limitation is to utilize the maximum likelihood sequence estimation (MLSE) at the receiver. However, a practical problem of MLSE is its high implementation complexity. Even though the channel impulse response can be truncated by using a two-tap filter before applying the MLSE, it still faces an implementation problem when used for multi-level modulation formats. In this paper, we propose and demonstrate a reduced-state MLSE for band-limited IM/DD transmission systems using M-ary pulse amplitude modulation (PAM-M) formats. We use a conventional Viterbi algorithm to search a reduced-state trellis, which is constructed by using the coarse pre-decision of the signal equalized by a feed-forward equalizer. Thus, the proposed MLSE reduces the implementation complexity significantly. We evaluate the performance of the proposed reduced-state MLSE over 100∼140-Gb/s PAM-4/6/8 transmission systems implemented by using a 1.3-µm directly modulated laser. The results show that the proposed MLSE achieves almost the same performance as the conventional MLSE but reduces the implementation complexity by a factor of 4∼10 when the complexity is assessed by the number of multiplications and additions.

Original languageEnglish
Pages (from-to)38505-38515
Number of pages11
JournalOptics Express
Volume28
Issue number26
DOIs
Publication statusPublished - 21 Dec 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Reduced-state MLSE for an IM/DD system using PAM modulation'. Together they form a unique fingerprint.

Cite this