Abstract
Optical binding of microparticles offers a versatile playground for investigating the optomechanics of levitated multi-particle systems. We report millimeter-range optical binding of polystyrene microparticles in hollow-core photonic crystal fiber. The first particle scatters the incident LP01 mode into several LP0n modes, creating a beat pattern that exerts a position-dependent force on the second particle. Particle binding results from the interplay of the forces created by counterpropagating beams. A femtosecond trapping laser is used so that group velocity walk-off eliminates disturbance caused by higher order modes accidentally excited at the fiber input. The inter-particle distance can be optically switched over 2 orders of magnitude (from 42 µm to 3 mm), and the bound particle pairs can be translated along the fiber by unbalancing the powers in the counterpropagating trapping beams. The frequency response of a bound particle pair is investigated at low gas pressure by driving with an intensity-modulated control beam. The system offers new degrees of freedom for manipulating the dynamics and configurations of optically levitated microparticle arrays.
Original language | English |
---|---|
Pages (from-to) | 3909-3912 |
Number of pages | 4 |
Journal | Optics Letters |
Volume | 46 |
Issue number | 16 |
DOIs | |
Publication status | Published - 15 Aug 2021 |