Recent progress in ion-regulated organic room-temperature phosphorescence

Wenbo Dai, Yitian Jiang, Yunxiang Lei, Xiaobo Huang, Peng Sun, Jianbing Shi, Bin Tong, Dongpeng Yan*, Zhengxu Cai*, Yuping Dong

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

7 Citations (Scopus)

Abstract

Organic room-temperature phosphorescence (RTP) materials have attracted considerable attention for their extended afterglow at ambient conditions, eco-friendliness, and wide-ranging applications in bio-imaging, data storage, security inks, and emergency illumination. Significant advancements have been achieved in recent years in developing highly efficient RTP materials by manipulating the intermolecular interactions. In this perspective, we have summarized recent advances in ion-regulated organic RTP materials based on the roles and interactions of ions, including the ion-π interactions, electrostatic interactions, and coordinate interactions. Subsequently, the current challenges and prospects of utilizing ionic interactions for inducing and modulating the phosphorescent properties are presented. It is anticipated that this perspective will provide basic guidelines for fabricating novel ionic RTP materials and further extend their application potential.

Original languageEnglish
Pages (from-to)4222-4237
Number of pages16
JournalChemical Science
Volume15
Issue number12
DOIs
Publication statusPublished - 23 Feb 2024

Fingerprint

Dive into the research topics of 'Recent progress in ion-regulated organic room-temperature phosphorescence'. Together they form a unique fingerprint.

Cite this