Realtime Robust Malicious Traffic Detection via Frequency Domain Analysis

Chuanpu Fu, Qi Li, Meng Shen, Ke Xu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

108 Citations (Scopus)

Abstract

Machine learning (ML) based malicious traffic detection is an emerging security paradigm, particularly for zero-day attack detection, which is complementary to existing rule based detection. However, the existing ML based detection achieves low detection accuracy and low throughput incurred by inefficient traffic features extraction. Thus, they cannot detect attacks in realtime, especially in high throughput networks. Particularly, these detection systems similar to the existing rule based detection can be easily evaded by sophisticated attacks. To this end, we propose Whisper, a realtime ML based malicious traffic detection system that achieves both high accuracy and high throughput by utilizing frequency domain features. It utilizes sequential information represented by the frequency domain features to achieve bounded information loss, which ensures high detection accuracy, and meanwhile constrains the scale of features to achieve high detection throughput. In particular, attackers cannot easily interfere with the frequency domain features and thus Whisper is robust against various evasion attacks. Our experiments with 42 types of attacks demonstrate that, compared with the state-of-the-art systems, Whisper can accurately detect various sophisticated and stealthy attacks, achieving at most 18.36% improvement of AUC, while achieving two orders of magnitude throughput. Even under various evasion attacks, Whisper is still able to maintain around 90% detection accuracy.

Original languageEnglish
Title of host publicationCCS 2021 - Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security
PublisherAssociation for Computing Machinery
Pages3431-3446
Number of pages16
ISBN (Electronic)9781450384544
DOIs
Publication statusPublished - 12 Nov 2021
Event27th ACM Annual Conference on Computer and Communication Security, CCS 2021 - Virtual, Online, Korea, Republic of
Duration: 15 Nov 202119 Nov 2021

Publication series

NameProceedings of the ACM Conference on Computer and Communications Security
ISSN (Print)1543-7221

Conference

Conference27th ACM Annual Conference on Computer and Communication Security, CCS 2021
Country/TerritoryKorea, Republic of
CityVirtual, Online
Period15/11/2119/11/21

Keywords

  • frequency domain
  • machine learning
  • malicious traffic detection

Fingerprint

Dive into the research topics of 'Realtime Robust Malicious Traffic Detection via Frequency Domain Analysis'. Together they form a unique fingerprint.

Cite this