Real-time Prediction Method of Remaining Useful Life Based on TinyML

Hongbo Liu, Ping Song, Youtian Qie, Yifan Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

Tiny Machine Learning (TinyML) is a new research area aimed at designing and developing machine learning (ML) techniques for embedded systems and IoT units. Due to the limited resources of embedded system, neural network pruning is widely used to reduce resource occupation. To solve the problem that the Remaining Useful Life (RUL) of the equipment is difficult to calculate accurately and in real time, a pruning method based on L1 norm weight was designed to reduce the memory footprint and computational load of the neural network, and a lightweight two-dimensional convolutional neural network was constructed. Experimental results show that compared with random pruning, this method greatly reduces the influence of neural network parameter reduction on the accuracy of inference results. Meanwhile, a retraining method based on Adam optimization was used to make the RUL curve predicted by the retrained model more close to the real RUL curve. When the weight parameters are reduced by 30%, the model still maintains good prediction accuracy, and can realize the real-time prediction of RUL in the embedded system with limited resources.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages693-698
Number of pages6
ISBN (Electronic)9781665469838
DOIs
Publication statusPublished - 2022
Event2022 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2022 - Guiyang, China
Duration: 17 Jul 202222 Jul 2022

Publication series

Name2022 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2022

Conference

Conference2022 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2022
Country/TerritoryChina
CityGuiyang
Period17/07/2222/07/22

Fingerprint

Dive into the research topics of 'Real-time Prediction Method of Remaining Useful Life Based on TinyML'. Together they form a unique fingerprint.

Cite this