Real-time Object Detection with Attention Mask

Haixin Wang, Xue Bai, Qiongzhi Wu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

With the development of deep convolutional neural network, the performance of object detection is obviously improved. However, there are still some challenges such as small size and occlusion. In this paper, we present a novel detector named Attention Mask Detector (AMDet). Our motivation is using mask to enhance foreground features and suppress background ones. The mask is produced by an attention branch which is supervised by weak segmentation ground-truth. This weak segmentation ground-truth is generated by bounding box without extra annotations. Our method is based on one-stage detector. We do experiments on both PASCAL VOC and MS COCO datasets and have a result comparison with other one-stage detectors.

Original languageEnglish
Title of host publicationICSIDP 2019 - IEEE International Conference on Signal, Information and Data Processing 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728123455
DOIs
Publication statusPublished - Dec 2019
Event2019 IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2019 - Chongqing, China
Duration: 11 Dec 201913 Dec 2019

Publication series

NameICSIDP 2019 - IEEE International Conference on Signal, Information and Data Processing 2019

Conference

Conference2019 IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2019
Country/TerritoryChina
CityChongqing
Period11/12/1913/12/19

Keywords

  • attention
  • deep learning
  • object detection
  • real-time

Fingerprint

Dive into the research topics of 'Real-time Object Detection with Attention Mask'. Together they form a unique fingerprint.

Cite this