Real-time detection of potable-reclaimed water pipe cross-connection events by conventional water quality sensors using machine learning methods

Xiyan Xu, Ying Liu, Shuming Liu*, Junyu Li, Guancheng Guo, Kate Smith

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

Risk of cross-connection is becoming higher due to greater construction of potable-reclaimed water dual distribution systems. Cross-connection events can result in serious health concerns and reduce public confidence in reclaimed water. Thus, reliable, cost-effective and real-time online detection methods for early warning are required. The current study carried out pilot-scale experiments to simulate potable-reclaimed water pipe cross-connection events for different mixing ratios (from 30% to 1%) using machine learning methods based on multiple conventional water quality parameters. The parameters included residual chlorine, pH, turbidity, temperature, conductivity, oxidation-reduction potential and chemical oxygen demand. The results showed that correlated variation occurred among water quality parameters at the time of the cross-connection event. A single parameter-based method can be effective at high mixing ratios, but not at low mixing ratios. The direct supporting vector machine (SVM)-based method managed to overcome this drawback, but coped poorly with abnormal readings of water parameter sensors. In that respect, a Pearson correlation coefficient (PCC)-SVM-based method was developed. It provided not only high detection performance under normal conditions, but also remained reliable when abnormal readings occurred. The detection accuracy and true positive rate of this method was still over 88%, and the false positive rate was below 12%, given a sudden variation of an individual water quality parameter. The receiver operating characteristic curves further confirmed the promising practical applicability of this PCC-SVM-based method for early detection of cross-connection events.

Original languageEnglish
Pages (from-to)201-209
Number of pages9
JournalJournal of Environmental Management
Volume238
DOIs
Publication statusPublished - 15 May 2019
Externally publishedYes

Keywords

  • Cross-connection
  • Machine learning method
  • Potable water
  • Real-time detection
  • Water quality parameter
  • Water reuse

Fingerprint

Dive into the research topics of 'Real-time detection of potable-reclaimed water pipe cross-connection events by conventional water quality sensors using machine learning methods'. Together they form a unique fingerprint.

Cite this