TY - JOUR
T1 - Real-time correction of dynamic thermal differential of supersonic conformal optical system
AU - Li, Yanzhang
AU - Huang, Changchun
AU - Zhang, Yunqiang
AU - Niu, Yajun
AU - Song, Dalin
AU - Chang, Jun
N1 - Publisher Copyright:
© 2017, Editorial Board of Journal of Infrared and Laser Engineering. All right reserved.
PY - 2017/4/25
Y1 - 2017/4/25
N2 - With the development of science and technology, there are more and more high requirements of imaging quality for high speed aircraft. The effect of friction heating on imaging quality of supersonic speed system with a conformal dome was studied. An conformal optical system with a conformal dome which had a length-to-diameter ratio of 1 was designed. The system had two wedge mirrors for field scanning, which provided a instantaneous FOV of 4°and a scanning FOV of 60°. A conformal fairing aerodynamic simulation experiment with the speed of Mach 3 and attack angle of 0° was finished. The surface temperature distribution of conformal dome in supersonic speed was obtained. Through the fluid-solid interaction, surface variation of different periods was calculated. The thermal surface variation was fitted into Zernike coefficients and applied to conformal optical system. The analysis results showed that the dynamic aberration introduced by high speed flight affected the imaging quality of optical system. In order to guarantee the system precision, a Spatial Light Modulator (SLM) was used to correct the aberration of different periods. After correction, system imaging quality was close to the diffraction limit, which had realized thermal aberration correction of conformal dome in supersonic speed flight. This study has certain significance to the development of high precision aircraft.
AB - With the development of science and technology, there are more and more high requirements of imaging quality for high speed aircraft. The effect of friction heating on imaging quality of supersonic speed system with a conformal dome was studied. An conformal optical system with a conformal dome which had a length-to-diameter ratio of 1 was designed. The system had two wedge mirrors for field scanning, which provided a instantaneous FOV of 4°and a scanning FOV of 60°. A conformal fairing aerodynamic simulation experiment with the speed of Mach 3 and attack angle of 0° was finished. The surface temperature distribution of conformal dome in supersonic speed was obtained. Through the fluid-solid interaction, surface variation of different periods was calculated. The thermal surface variation was fitted into Zernike coefficients and applied to conformal optical system. The analysis results showed that the dynamic aberration introduced by high speed flight affected the imaging quality of optical system. In order to guarantee the system precision, a Spatial Light Modulator (SLM) was used to correct the aberration of different periods. After correction, system imaging quality was close to the diffraction limit, which had realized thermal aberration correction of conformal dome in supersonic speed flight. This study has certain significance to the development of high precision aircraft.
KW - Conformal optical system
KW - Finite element analysis
KW - Real-time dynamical heat aberration correction
KW - SLM
UR - http://www.scopus.com/inward/record.url?scp=85021703510&partnerID=8YFLogxK
U2 - 10.3788/IRLA201746.0418001
DO - 10.3788/IRLA201746.0418001
M3 - Article
AN - SCOPUS:85021703510
SN - 1007-2276
VL - 46
JO - Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering
JF - Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering
IS - 4
M1 - 0418001
ER -