Real-time classification of variable length multi-attribute motions

Chuanjun Li*, Latifur Khan, Balakrishnan Prabhakaran

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)

Abstract

Multi-attribute motion data can be generated in many applications/ devices, such as motion capture devices and animations. It can have dozens of attributes, thousands of rows, and even similar motions can have different durations and different speeds at corresponding parts. There are no row-to-row correspondences between data matrices of two motions. To be classified and recognized, multi-attribute motion data of different lengths are reduced to feature vectors by using the properties of singular value decomposition (SVD) of motion data. The reduced feature vectors of similar motions are close to each other, while reduced feature vectors are different from each other if their motions are different. By applying support vector machines (SVM) to the feature vectors, we efficiently classify and recognize real-world multi-attribute motion data. With our data set of more than 300 motions with different lengths and variations, SVM outperforms classification by related similarity measures, in terms of accuracy and CPU time. The performance of our approach shows its feasibility of real-time applications to real-world data.

Original languageEnglish
Pages (from-to)163-183
Number of pages21
JournalKnowledge and Information Systems
Volume10
Issue number2
DOIs
Publication statusPublished - Aug 2006
Externally publishedYes

Keywords

  • Classification
  • Multi-attribute motion
  • Pattern recognition
  • Singular value decomposition
  • Support vector machines

Fingerprint

Dive into the research topics of 'Real-time classification of variable length multi-attribute motions'. Together they form a unique fingerprint.

Cite this