TY - JOUR
T1 - Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers
AU - Yu, Miaorong
AU - Xu, Lu
AU - Tian, Falin
AU - Su, Qian
AU - Zheng, Nan
AU - Yang, Yiwei
AU - Wang, Jiuling
AU - Wang, Aohua
AU - Zhu, Chunliu
AU - Guo, Shiyan
AU - Zhang, Xin Xin
AU - Gan, Yong
AU - Shi, Xinghua
AU - Gao, Huajian
N1 - Publisher Copyright:
© 2018 The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - To optimally penetrate biological hydrogels such as mucus and the tumor interstitial matrix, nanoparticles (NPs) require physicochemical properties that would typically preclude cellular uptake, resulting in inefficient drug delivery. Here, we demonstrate that (poly(lactic-co-glycolic acid) (PLGA) core)-(lipid shell) NPs with moderate rigidity display enhanced diffusivity through mucus compared with some synthetic mucus penetration particles (MPPs), achieving a mucosal and tumor penetrating capability superior to that of both their soft and hard counterparts. Orally administered semi-elastic NPs efficiently overcome multiple intestinal barriers, and result in increased bioavailability of doxorubicin (Dox) (up to 8 fold) compared to Dox solution. Molecular dynamics simulations and super-resolution microscopy reveal that the semi-elastic NPs deform into ellipsoids, which enables rotation-facilitated penetration. In contrast, rigid NPs cannot deform, and overly soft NPs are impeded by interactions with the hydrogel network. Modifying particle rigidity may improve the efficacy of NP-based drugs, and can be applicable to other barriers.
AB - To optimally penetrate biological hydrogels such as mucus and the tumor interstitial matrix, nanoparticles (NPs) require physicochemical properties that would typically preclude cellular uptake, resulting in inefficient drug delivery. Here, we demonstrate that (poly(lactic-co-glycolic acid) (PLGA) core)-(lipid shell) NPs with moderate rigidity display enhanced diffusivity through mucus compared with some synthetic mucus penetration particles (MPPs), achieving a mucosal and tumor penetrating capability superior to that of both their soft and hard counterparts. Orally administered semi-elastic NPs efficiently overcome multiple intestinal barriers, and result in increased bioavailability of doxorubicin (Dox) (up to 8 fold) compared to Dox solution. Molecular dynamics simulations and super-resolution microscopy reveal that the semi-elastic NPs deform into ellipsoids, which enables rotation-facilitated penetration. In contrast, rigid NPs cannot deform, and overly soft NPs are impeded by interactions with the hydrogel network. Modifying particle rigidity may improve the efficacy of NP-based drugs, and can be applicable to other barriers.
UR - http://www.scopus.com/inward/record.url?scp=85049746733&partnerID=8YFLogxK
U2 - 10.1038/s41467-018-05061-3
DO - 10.1038/s41467-018-05061-3
M3 - Article
C2 - 29973592
AN - SCOPUS:85049746733
SN - 2041-1723
VL - 9
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 2607
ER -