Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers

Miaorong Yu, Lu Xu, Falin Tian, Qian Su, Nan Zheng, Yiwei Yang, Jiuling Wang, Aohua Wang, Chunliu Zhu, Shiyan Guo, Xin Xin Zhang, Yong Gan*, Xinghua Shi, Huajian Gao

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

218 Citations (Scopus)

Abstract

To optimally penetrate biological hydrogels such as mucus and the tumor interstitial matrix, nanoparticles (NPs) require physicochemical properties that would typically preclude cellular uptake, resulting in inefficient drug delivery. Here, we demonstrate that (poly(lactic-co-glycolic acid) (PLGA) core)-(lipid shell) NPs with moderate rigidity display enhanced diffusivity through mucus compared with some synthetic mucus penetration particles (MPPs), achieving a mucosal and tumor penetrating capability superior to that of both their soft and hard counterparts. Orally administered semi-elastic NPs efficiently overcome multiple intestinal barriers, and result in increased bioavailability of doxorubicin (Dox) (up to 8 fold) compared to Dox solution. Molecular dynamics simulations and super-resolution microscopy reveal that the semi-elastic NPs deform into ellipsoids, which enables rotation-facilitated penetration. In contrast, rigid NPs cannot deform, and overly soft NPs are impeded by interactions with the hydrogel network. Modifying particle rigidity may improve the efficacy of NP-based drugs, and can be applicable to other barriers.

Original languageEnglish
Article number2607
JournalNature Communications
Volume9
Issue number1
DOIs
Publication statusPublished - 1 Dec 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers'. Together they form a unique fingerprint.

Cite this