Rapid prediction of polymer stab resistance performance

Yaxin Guo, Mengqi Yuan*, Xinming Qian, Yuchen Wei, Yi Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

Rapid and accurate estimation of a material's stab-resistance performance is important for the design of personal protective clothing. In this work, the stab-resistance performance was investigated and compared on five commercially used polymers—PA (polyamide) 6, PA11, PA12, PC (polycarbonate), and PE (polyethylene)—by conducting impact tests as described in the GA 68-2008 National Standard. The relationship between the penetration depth and impact energy was studied. Rockwell hardness tests, shear strength tests, and 3D tomography observations were performed to characterize the response mechanisms of the five polymers. The process of a knife impacting a substrate was described and verified. It was revealed that the surface hardness and shear strength were the key mechanical properties that affected the overall stab-resistance performance. A theoretical model was proposed, which combined the mechanical properties to quantitatively predict the material's response behavior under a knife impact, and it was validated with a prediction error between 5% and 20%. The results can be used in the selection process of stab-resistant candidates and predicting the knife-penetration performances of different materials under various impact energies.

Original languageEnglish
Article number108721
JournalMaterials and Design
Volume192
DOIs
Publication statusPublished - Jul 2020

Keywords

  • Finite element analysis
  • Impact behavior
  • Mechanical properties
  • Stab resistant

Fingerprint

Dive into the research topics of 'Rapid prediction of polymer stab resistance performance'. Together they form a unique fingerprint.

Cite this