TY - GEN
T1 - Randomized kernel selection with spectra of multilevel circulant matrices
AU - Ding, Lizhong
AU - Liao, Shizhong
AU - Liu, Yong
AU - Yang, Peng
AU - Gao, Xin
N1 - Publisher Copyright:
Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2018
Y1 - 2018
N2 - Kernel selection aims at choosing an appropriate kernel function for kernel-based learning algorithms to avoid either underfitting or overfitting of the resulting hypothesis. One of the main problems faced by kernel selection is the evaluation of the goodness of a kernel, which is typically difficult and computationally expensive. In this paper, we propose a randomized kernel selection approach to evaluate and select the kernel with the spectra of the specifically designed multilevel circulant matrices (MCMs), which is statistically sound and computationally efficient. Instead of constructing the kernel matrix, we construct the randomized MCM to encode the kernel function and all data points together with labels. We build a one-to-one correspondence between all candidate kernel functions and the spectra of the randomized MCMs by Fourier transform. We prove the statistical properties of the randomized MCMs and the randomized kernel selection criteria, which theoretically qualify the utility of the randomized criteria in kernel selection. With the spectra of the randomized MCMs, we derive a series of randomized criteria to conduct kernel selection, which can be computed in log-linear time and linear space complexity by fast Fourier transform (FFT). Experimental results demonstrate that our randomized kernel selection criteria are significantly more efficient than the existing classic and widely-used criteria while preserving similar predictive performance.
AB - Kernel selection aims at choosing an appropriate kernel function for kernel-based learning algorithms to avoid either underfitting or overfitting of the resulting hypothesis. One of the main problems faced by kernel selection is the evaluation of the goodness of a kernel, which is typically difficult and computationally expensive. In this paper, we propose a randomized kernel selection approach to evaluate and select the kernel with the spectra of the specifically designed multilevel circulant matrices (MCMs), which is statistically sound and computationally efficient. Instead of constructing the kernel matrix, we construct the randomized MCM to encode the kernel function and all data points together with labels. We build a one-to-one correspondence between all candidate kernel functions and the spectra of the randomized MCMs by Fourier transform. We prove the statistical properties of the randomized MCMs and the randomized kernel selection criteria, which theoretically qualify the utility of the randomized criteria in kernel selection. With the spectra of the randomized MCMs, we derive a series of randomized criteria to conduct kernel selection, which can be computed in log-linear time and linear space complexity by fast Fourier transform (FFT). Experimental results demonstrate that our randomized kernel selection criteria are significantly more efficient than the existing classic and widely-used criteria while preserving similar predictive performance.
UR - http://www.scopus.com/inward/record.url?scp=85055697563&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85055697563
T3 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
SP - 2910
EP - 2917
BT - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PB - AAAI press
T2 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Y2 - 2 February 2018 through 7 February 2018
ER -