TY - JOUR
T1 - Quasi-one-dimensional topological material Bi4X4(X=Br,I)
AU - Han, Junfeng
AU - Xiao, Wende
AU - Yao, Yugui
N1 - Publisher Copyright:
© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2022
Y1 - 2022
N2 - Bismuth halogenides, a family of quasi-one-dimensional (1D) materials, including α and α phases of Bi4Br4 and Bi4I4, have been predicted to exhibit rich and interesting topological properties. The single layer of Bi4Br4 was demonstrated to be a quantum spin Hall insulator (QSHI) with a 0.18 eV gap. Such a band gap is large enough for the observation of QSHI at room temperature. Bulk α-Bi4Br4 was categorized as a higher-order topological insulator and was soon examined in experiments. In addition, the α-Bi4Br4 exhibit simultaneously the topological phase and superconductive phase under 3.8–4.3 GPa pressure. While the single layer of Bi4I4 was shown to be close to the critical point of the QSHI/trivial-insulator phase transition, the α-Bi4I4 was considered to be a strong or weak topological insulator. In this work, we reviewed the recent progress in the topological properties of bismuth halogenides, including the theoretical calculations, angle-resolved photoemission spectroscopy, scanned tunneling microscopy analyses, quantum transport measurement and the superconducting phase transfer under pressure. We expect further research of this family material about the non-trivial superconductor and possible Majorana, room-temperature quantum transport effect and potential application in the quantum device for the electronics and information technology.
AB - Bismuth halogenides, a family of quasi-one-dimensional (1D) materials, including α and α phases of Bi4Br4 and Bi4I4, have been predicted to exhibit rich and interesting topological properties. The single layer of Bi4Br4 was demonstrated to be a quantum spin Hall insulator (QSHI) with a 0.18 eV gap. Such a band gap is large enough for the observation of QSHI at room temperature. Bulk α-Bi4Br4 was categorized as a higher-order topological insulator and was soon examined in experiments. In addition, the α-Bi4Br4 exhibit simultaneously the topological phase and superconductive phase under 3.8–4.3 GPa pressure. While the single layer of Bi4I4 was shown to be close to the critical point of the QSHI/trivial-insulator phase transition, the α-Bi4I4 was considered to be a strong or weak topological insulator. In this work, we reviewed the recent progress in the topological properties of bismuth halogenides, including the theoretical calculations, angle-resolved photoemission spectroscopy, scanned tunneling microscopy analyses, quantum transport measurement and the superconducting phase transfer under pressure. We expect further research of this family material about the non-trivial superconductor and possible Majorana, room-temperature quantum transport effect and potential application in the quantum device for the electronics and information technology.
KW - BiBr
KW - BiI
KW - Topological materials
KW - quasi-one-dimensional materials
UR - http://www.scopus.com/inward/record.url?scp=85128372382&partnerID=8YFLogxK
U2 - 10.1080/23746149.2022.2057234
DO - 10.1080/23746149.2022.2057234
M3 - Review article
AN - SCOPUS:85128372382
SN - 2374-6149
VL - 7
JO - Advances in Physics: X
JF - Advances in Physics: X
IS - 1
M1 - 2057234
ER -