Quantum interference mediated vertical molecular tunneling transistors

Chuancheng Jia, Marjan Famili, Marco Carlotti, Yuan Liu, Peiqi Wang, Iain M. Grace, Ziying Feng, Yiliu Wang, Zipeng Zhao, Mengning Ding, Xiang Xu, Chen Wang, Sung Joon Lee, Yu Huang, Ryan C. Chiechi, Colin J. Lambert, Xiangfeng Duan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

65 Citations (Scopus)

Abstract

Molecular transistors operating in the quantum tunneling regime represent potential electronic building blocks for future integrated circuits. However, due to their complex fabrication processes and poor stability, traditional molecular transistors can only operate stably at cryogenic temperatures. Here, through a combined experimental and theoretical investigation, we demonstrate a new design of vertical molecular tunneling transistors, with stable switchingoperations uptoroomtemperature, formed from cross-planegraphene/self-assembledmonolayer (SAM)/gold heterostructures. We show that vertical molecular junctions formed from pseudo-p-bis((4-(acetylthio)phenyl)ethynyl)-p-[2,2]cyclophane (PCP) SAMs exhibit destructive quantum interference (QI) effects, which are absent in 1,4-bis(((4-acetylthio)phenyl)ethynyl)benzene (OPE3) SAMs. Consequently, the zero-bias differential conductance of the former is only about 2% of the latter, resulting in an enhanced on-off current ratio for (PCP) SAMs. Field-effect control is achieved using an ionic liquid gate,whose strong vertical electric field penetratesthroughthe graphene layer andtunesthe energy levels of the SAMs. The resulting on-off current ratio achieved in PCP SAMs can reach up to ∼330, about one order of magnitude higher than that of OPE3 SAMs. The demonstration of molecular junctions with combined QI effect and gate tunability represents a critical step toward functional devices in future molecular-scale electronics.

Original languageEnglish
Article numberaat8237
JournalScience advances
Volume4
Issue number10
DOIs
Publication statusPublished - 12 Oct 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Quantum interference mediated vertical molecular tunneling transistors'. Together they form a unique fingerprint.

Cite this