Pyrolysis of CL20-BTF Co-crystal via ReaxFF-lg Reactive Force Field Molecular Dynamics Simulations

Zhen Yang, Yuan Hang He*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

To obtain detailed information on the potential energy, the evolution of species, the initial reaction paths, and thermal decomposition products, we conducted simulations on pyrolysis process of CL20/BTF co-crystal using the ReaxFF/lg reaction force field, with temperature set at 2000 K to 3000 K. With the analysis of evolution curves of potential energy based on exponential function, we obtain the overall characteristic time. Via a description of the total package reaction with classical Arrhenius law, we obtain the activation energy of CL20/BTF co-crystal: Ea=60.8 kcal/mol. Based on the initial path of CL20/BTF co-crystal thermal decomposition we studied, we conclude that N-NO2 bond of CL20 molecules breaks first, working as a dominant role in the initial stage of thermal decomposition under the condition of different temperatures, and that all CL20 molecules completely decompose before BTF molecular regardless of different temperatures. We also find that the main products of CL20/BTF co-crystal are NO2, NO, NO3, HNO, O2, N2, H2O, CO2, N2O, and HONO, etc., on which the temperature forms certain influence.

Original languageEnglish
Pages (from-to)557-563
Number of pages7
JournalChinese Journal of Chemical Physics
Volume29
Issue number5
DOIs
Publication statusPublished - 27 Oct 2016

Keywords

  • CL20/BTF co-crystal
  • Molecular dynamics
  • Pyrolysis
  • Reaction mechanism
  • ReaxFF/lg

Fingerprint

Dive into the research topics of 'Pyrolysis of CL20-BTF Co-crystal via ReaxFF-lg Reactive Force Field Molecular Dynamics Simulations'. Together they form a unique fingerprint.

Cite this

Yang, Z., & He, Y. H. (2016). Pyrolysis of CL20-BTF Co-crystal via ReaxFF-lg Reactive Force Field Molecular Dynamics Simulations. Chinese Journal of Chemical Physics, 29(5), 557-563. https://doi.org/10.1063/1674-0068/29/cjcp1603054