Protein model quality assessment by learning-to-rank

Xiaoyang Jing, Qiwen Dong*, Xuan Liu, Bin Liu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

Protein structures are essential to understand the function. The predicted models have a broad range of the accuracy. Reliable estimates of the model quality are critical in determining the usefulness of the model to address a specific problem. In this study, a novel method has been presented to rank the models by their relative qualities. The proposed method first extracts various features from the three dimensional structures of proteins and then the learning-to-rank algorithm is used to rank the models based on their similarities with the native structures. Furthermore, a quasi single-model method is presented, which uses the top five identified models as references and ranks the other models by the average similarity with the reference models. Benchmark test is performed on a newly developed, template-based decoy generators which covers all the main structure classes of proteins. The proposed learning-to-rank method achieves an average Pearson correlation coefficient of 0.94 and a AUC value of 0.97, which consistently outperform all other well-developed methods. The quasi single-model can further improves the performance and achieve nearly perfect results with both PCC and AUC value of 0.99. The results demonstrate that the proposed method is an effective methodology for model quality assessment and provides the state-of-the-art performance.

Original languageEnglish
Title of host publicationProceedings - 2015 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015
Editorslng. Matthieu Schapranow, Jiayu Zhou, Xiaohua Tony Hu, Bin Ma, Sanguthevar Rajasekaran, Satoru Miyano, Illhoi Yoo, Brian Pierce, Amarda Shehu, Vijay K. Gombar, Brian Chen, Vinay Pai, Jun Huan
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages91-96
Number of pages6
ISBN (Electronic)9781467367981
DOIs
Publication statusPublished - 16 Dec 2015
Externally publishedYes
EventIEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015 - Washington, United States
Duration: 9 Nov 201512 Nov 2015

Publication series

NameProceedings - 2015 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015

Conference

ConferenceIEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015
Country/TerritoryUnited States
CityWashington
Period9/11/1512/11/15

Keywords

  • learning to rank
  • model quality assessment
  • protein structure

Fingerprint

Dive into the research topics of 'Protein model quality assessment by learning-to-rank'. Together they form a unique fingerprint.

Cite this