Protein Fold Recognition Based on Auto-Weighted Multi-View Graph Embedding Learning Model

Ke Yan, Jie Wen, Yong Xu*, Bin Liu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Protein fold recognition is critical for studies of the protein structure prediction and drug design. Several methods have been proposed to obtain discriminative features from the protein sequences for fold recognition. However, the ensemble methods that combine the various features to improve predictive performance remain the challenge problems. In this study, we proposed two novel algorithms: AWMG and EMfold. AWMG used a novel predictor based on the multi-view learning framework for fold recognition. Each view was treated as the intermediate representation of the corresponding data source of proteins, including the evolutionary information and the retrieval information. AWMG calculated the auto-weight for each view respectively and constructed the latent subspace which contains the common information shared by different views. The marginalized constraint was employed to enlarge the margins between different folds, improving the predictive performance of AWMG. Furthermore, we proposed a novel ensemble method called EMfold, which combines two complementary methods AWMG and DeepSS. The later method was a template-based algorithm using the SPARKS-X and DeepFR programs. EMfold integrated the advantages of template-based assignment and machine learning classifier. Experimental results on the two widely datasets (LE and YK) showed that the proposed methods outperformed some state-of-the-art methods, indicating that AWMG and EMfold are useful tools for protein fold recognition.

Original languageEnglish
Pages (from-to)2682-2691
Number of pages10
JournalIEEE/ACM Transactions on Computational Biology and Bioinformatics
Volume18
Issue number6
DOIs
Publication statusPublished - 2021

Keywords

  • Laplacian matrix
  • Multi-view learning method
  • Protein fold recognition
  • Template-based method

Fingerprint

Dive into the research topics of 'Protein Fold Recognition Based on Auto-Weighted Multi-View Graph Embedding Learning Model'. Together they form a unique fingerprint.

Cite this