Progressive Task-Based Universal Network for Raw Infrared Remote Sensing Imagery Ship Detection

Yuan Li, Qizhi Xu*, Zhaofeng He, Wei Li

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Infrared remote sensing images are becoming increasingly popular due to their superior penetration and resistance to light interference. However, challenges still remain when applying them in real-world applications: 1) raw infrared images suffer from severe stripes interference and the preprocessing techniques used to obtain standard image products for subsequent detection tasks tend to be time-consuming, which fails to meet the application requirements; 2) current destriping techniques may inevitably weaken the local contrast between some objects and the local background since they need to consider the gray consistency of the overall image; and 3) in low-resolution images, dim and small infrared targets are challenging to discriminate, resulting in high false alarms. To address these challenges, we proposed a progressive task-based universal network for raw infrared image ship detection while simultaneously removing stripes. First, we built an integrated network consisting of two components: the stripe denoising component (SDC) and the object detection component (ODC). We also designed a feedback loss adjustment mechanism to enhance the focus of the SDC on the target area. Second, a directed two-branch network was constructed for efficient stripe noise removal, including an x -direction branch for feature enhancement and a y -direction branch for grayscale smoothing. Finally, a parallel network with two labels was designed to extract the inherent features of the target and the background, as well as their relationship features, to achieve refined ship detection. We conducted experiments on a self-assembled dataset from the GaoFen-1 satellite to validate our approach. The experimental results demonstrated that the proposed method outperformed other state-of-the-art methods in infrared image ship detection.

Original languageEnglish
Article number5610013
JournalIEEE Transactions on Geoscience and Remote Sensing
Volume61
DOIs
Publication statusPublished - 2023

Keywords

  • Deep learning
  • infrared remote sensing images
  • progressive network
  • ship detection

Fingerprint

Dive into the research topics of 'Progressive Task-Based Universal Network for Raw Infrared Remote Sensing Imagery Ship Detection'. Together they form a unique fingerprint.

Cite this