TY - JOUR
T1 - Predicting cost-effective carbon fiber precursors
T2 - Unraveling the functionalities of oxygen and nitrogen-containing groups during carbonization from ReaxFF simulations
AU - Mao, Qian
AU - Rajabpour, Siavash
AU - Kowalik, Malgorzata
AU - van Duin, Adri C.T.
N1 - Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2020/4/15
Y1 - 2020/4/15
N2 - Blends of polyacrylonitrile (PAN) and poly(p-phenylene-2,6-benzobisoxazole) (PBO) as precursors may offer an opportunity to reduce the cost of carbon fiber (CF) production. The all-carbon ring formations and volatile gas production during the heating and carbonization for 9 PAN/PBO blend precursors with varying mixing ratios are studied via the ReaxFF reactive molecular dynamics simulations. Evolutions of oxygen-containing (O-containing) and nitrogen-containing (N-containing) groups are detailed, in order to reveal the reaction mechanisms of the O and N-based CF precursors. Particularly, the O-containing groups are identified to be more efficient for initiating the carbonization, whereas N-containing groups are far longer retained in the graphitic materials and play a key role in capturing and converting carbon radical species into the graphitic networks. Additionally, the PAN/PBO blend precursor with a mole ratio of 1:1 is compared with the pre-oxidized PAN, PAN, and PBO. It is found that the PAN/PBO blends could be a promising alternative for the cost-effective PAN-based CF precursors, since they can decrease the cost of the CF production by means of: (a) eliminating the pre-oxidation process, (b) having considerable all-carbon ring formations within a short period, and (c) having a relatively fast conversion rate, reaching 95% 6-membered carbon ring formation.
AB - Blends of polyacrylonitrile (PAN) and poly(p-phenylene-2,6-benzobisoxazole) (PBO) as precursors may offer an opportunity to reduce the cost of carbon fiber (CF) production. The all-carbon ring formations and volatile gas production during the heating and carbonization for 9 PAN/PBO blend precursors with varying mixing ratios are studied via the ReaxFF reactive molecular dynamics simulations. Evolutions of oxygen-containing (O-containing) and nitrogen-containing (N-containing) groups are detailed, in order to reveal the reaction mechanisms of the O and N-based CF precursors. Particularly, the O-containing groups are identified to be more efficient for initiating the carbonization, whereas N-containing groups are far longer retained in the graphitic materials and play a key role in capturing and converting carbon radical species into the graphitic networks. Additionally, the PAN/PBO blend precursor with a mole ratio of 1:1 is compared with the pre-oxidized PAN, PAN, and PBO. It is found that the PAN/PBO blends could be a promising alternative for the cost-effective PAN-based CF precursors, since they can decrease the cost of the CF production by means of: (a) eliminating the pre-oxidation process, (b) having considerable all-carbon ring formations within a short period, and (c) having a relatively fast conversion rate, reaching 95% 6-membered carbon ring formation.
UR - http://www.scopus.com/inward/record.url?scp=85076257635&partnerID=8YFLogxK
U2 - 10.1016/j.carbon.2019.12.008
DO - 10.1016/j.carbon.2019.12.008
M3 - Article
AN - SCOPUS:85076257635
SN - 0008-6223
VL - 159
SP - 25
EP - 36
JO - Carbon
JF - Carbon
ER -