Preclinical Efficacy And Safety Evaluation of AAV-OTOF in DFNB9 Mouse Model And Nonhuman Primate

Jieyu Qi*, Liyan Zhang, Fangzhi Tan*, Yang Zhang, Yinyi Zhou, Ziyu Zhang, Hongyang Wang, Chaorong Yu, Lulu Jiang, Jiancheng Liu, Tian Chen, Lianqiu Wu, Shanzhong Zhang, Sijie Sun, Shan Sun*, Ling Lu*, Qiuju Wang*, Renjie Chai*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

OTOF mutations are the principal causes of auditory neuropathy. There are reports on Otof-related gene therapy in mice, but there is no preclinical research on the drug evaluations. Here, Anc80L65 and the mouse hair cell-specific Myo15 promoter (mMyo15) are used to selectively and effectively deliver human OTOF to hair cells in mice and nonhuman primates to evaluate the efficacy and safety of OTOF gene therapy drugs. A new dual-AAV-OTOF-hybrid strategy to transfer full-length OTOF is generated, which can stably restore hearing in adult OTOFp.Q939*/Q939* mice with profound deafness, with the longest duration being at least 150 days, and the best therapeutic effect without difference in hearing from wild-type mice. An AAV microinjection method into the cochlea of cynomolgus monkeys without hearing impairment is further established and found the OTOF can be safely and effectively driven by the mMyo15 promoter in hair cells. In addition, the therapeutic dose of AAV drugs has no impact on normal hearing and does not cause significant systemic toxicity both in mouse and nonhuman primates. In summary, this study develops a potential gene therapy strategy for DFNB9 patients in the clinic and provides complete, standardized, and systematic research data for clinical research and application.

Original languageEnglish
Article number2306201
JournalAdvanced Science
Volume11
Issue number3
DOIs
Publication statusPublished - 19 Jan 2024

Keywords

  • OTOF
  • gene therapy
  • nonhuman primate
  • preclinical research

Fingerprint

Dive into the research topics of 'Preclinical Efficacy And Safety Evaluation of AAV-OTOF in DFNB9 Mouse Model And Nonhuman Primate'. Together they form a unique fingerprint.

Cite this