Abstract
A flame fuel cell setup is designed and built based on a micro-tubular solid oxide fuel cell and a two-layer porous media burner. The stable operation limits of the burner are obtained by adjusting the inlet gas velocity and the equivalence ratio. Methane fuel-rich flames are stabilized inside the burner from the equivalence ratio of 1.4-1.8. The effects of the equivalence ratio and the gas velocity on the temperature distribution inside the burner and the combustion products are studied. Using a burner efficiency based on lower heating values, up to 41.1% of methane was converted to H2 and CO at the equivalence ratio of 1.7. The maximum mole fraction of H2 and CO reached 9.32% and 8.18% respectively. Flame fuel cell experiments are carried out with different equivalence ratios. The tubular SOFC is directly heated up and reduced by the fuel-rich flame. The maximum power generated by the flame fuel cell reached 0.55 W at the equivalence ratio of 1.7 and the inlet gas velocity of 0.15 m/s.
Original language | English |
---|---|
Pages (from-to) | 117-123 |
Number of pages | 7 |
Journal | Energy |
Volume | 109 |
DOIs | |
Publication status | Published - 15 Aug 2016 |
Externally published | Yes |
Keywords
- Flame fuel cell
- Hydrogen
- Partial oxidation
- Porous media combustion