TY - JOUR
T1 - Pore-scale visualization of hydrate dissociation and mass transfer during depressurization using microfluidic experiments
AU - Yang, Junyu
AU - Liu, Yizhe
AU - Xu, Qianghui
AU - Liu, Zhiying
AU - Dai, Xiaoye
AU - Shi, Lin
AU - Luo, Kai H.
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/7/15
Y1 - 2024/7/15
N2 - Natural gas hydrate is a potential low-carbon energy resource. Extracting this resource efficiently remains a challenge, due to the intricacies involved in multiphase reactive transport during hydrate dissociation. This study employs microfluidic experimental techniques to observe pore-scale interactions during depressurization-induced hydrate dissociation, utilizing high-resolution spatial and temporal imagery. Supervised machine learning algorithms segmented these microscopic images, enabling the analysis of phase saturation changes and hydrate dissociation rates. The study identifies two distinct hydrate forms in microfluidic chips: hydrate films and crystals, each exhibiting unique dissociation characteristics. Hydrate films decomposed rapidly in response to pressure reductions below equilibrium with the dissociation rate of O(10−1 %/s) under stationary gas–water conditions. When considering gas–water migration, the gas encapsulated in the hydrate film will be displaced by water, leading to a reduced dissociation rate. The hydrate crystal dissociation is much slower with the dissociation rate of O(10−3 %/s) under stationary gas–water conditions compared to the hydrate film, hindered by mass transfer limitations. Gas-water migration can enhance crystal dissociation. The formation and expansion of gas microbubbles under depressurization accelerated hydrate dissociation within a confined temporal and spatial range, which was known as the self-promotion mechanisms. Significantly, depressurization-induced gas slug flow increases the dissociation rate by more than one order of magnitude, compared to that in stationary gas–water conditions. The depressurization process played a significant role, not only by facilitating thermodynamic feasibility for hydrate dissociation but also by inducing the critical gas slug flow. These results of the present study provide theoretical guidance for improving natural gas hydrate production efficiency.
AB - Natural gas hydrate is a potential low-carbon energy resource. Extracting this resource efficiently remains a challenge, due to the intricacies involved in multiphase reactive transport during hydrate dissociation. This study employs microfluidic experimental techniques to observe pore-scale interactions during depressurization-induced hydrate dissociation, utilizing high-resolution spatial and temporal imagery. Supervised machine learning algorithms segmented these microscopic images, enabling the analysis of phase saturation changes and hydrate dissociation rates. The study identifies two distinct hydrate forms in microfluidic chips: hydrate films and crystals, each exhibiting unique dissociation characteristics. Hydrate films decomposed rapidly in response to pressure reductions below equilibrium with the dissociation rate of O(10−1 %/s) under stationary gas–water conditions. When considering gas–water migration, the gas encapsulated in the hydrate film will be displaced by water, leading to a reduced dissociation rate. The hydrate crystal dissociation is much slower with the dissociation rate of O(10−3 %/s) under stationary gas–water conditions compared to the hydrate film, hindered by mass transfer limitations. Gas-water migration can enhance crystal dissociation. The formation and expansion of gas microbubbles under depressurization accelerated hydrate dissociation within a confined temporal and spatial range, which was known as the self-promotion mechanisms. Significantly, depressurization-induced gas slug flow increases the dissociation rate by more than one order of magnitude, compared to that in stationary gas–water conditions. The depressurization process played a significant role, not only by facilitating thermodynamic feasibility for hydrate dissociation but also by inducing the critical gas slug flow. These results of the present study provide theoretical guidance for improving natural gas hydrate production efficiency.
KW - Depressurization
KW - Hydrate dissociation
KW - Microfluidic technique
KW - Natural gas hydrate
KW - Pore-scale experiments
UR - http://www.scopus.com/inward/record.url?scp=85188847482&partnerID=8YFLogxK
U2 - 10.1016/j.fuel.2024.131519
DO - 10.1016/j.fuel.2024.131519
M3 - Article
AN - SCOPUS:85188847482
SN - 0016-2361
VL - 368
JO - Fuel
JF - Fuel
M1 - 131519
ER -