TY - JOUR
T1 - Polyoxometalates encapsulated into hollow double-shelled nanospheres as amphiphilic nanoreactors for an effective oxidative desulfurization
AU - Liu, Huifang
AU - Li, Zhen
AU - Dong, Jing
AU - Liu, Dan
AU - Liu, Chengpeng
AU - Chi, Yingnan
AU - Hu, Changwen
N1 - Publisher Copyright:
© 2020 The Royal Society of Chemistry.
PY - 2020/8/21
Y1 - 2020/8/21
N2 - Although some catalytic hollow nanoreactors have been fabricated in the past, the encapsulated active species focus on metal nanoparticles, and a method for polyoxometalate (POM)-containing hollow nanoreactors has seldom been developed. Herein, we report a synthetic strategy towards POM-based amphiphilic nanoreactors, where the hollow mesoporous double-shelled SiO2@C nanospheres were used to encapsulate Keggin-type H3PMo12O40 (PMo12). The outer hydrophobic carbon shell was beneficial for the enrichment of the organic substrate around the nanoreactor and simultaneously prevented the deposition of POMs on the outer surface of the nanoreactor. The inner hydrophilic silica cavity was modified by two types of organosilanes, which not only created an amphiphilic cavity environment but also acted as an anchor to mobilize PMo12. As the POM nanoreactor had the hydrophilic@hydrophobic SiO2@C shell and an amphiphilic cavity, both dibenzothiophene (DBT) and H2O2 could smoothly diffuse into the nanosized cavity, where the DBT was effectively oxidized (conversion: >99%) by the immobilized PMo12 under mild conditions. Importantly, the control experiments indicated that the confined effect of nanoreactor, amphiphilic SiO2@C double-shell, unique cavity environment, and mesoporous channels accounted for an excellent catalytic performance. Moreover, the nanoreactor was robust and could be reused for five cycles without loss of activity.
AB - Although some catalytic hollow nanoreactors have been fabricated in the past, the encapsulated active species focus on metal nanoparticles, and a method for polyoxometalate (POM)-containing hollow nanoreactors has seldom been developed. Herein, we report a synthetic strategy towards POM-based amphiphilic nanoreactors, where the hollow mesoporous double-shelled SiO2@C nanospheres were used to encapsulate Keggin-type H3PMo12O40 (PMo12). The outer hydrophobic carbon shell was beneficial for the enrichment of the organic substrate around the nanoreactor and simultaneously prevented the deposition of POMs on the outer surface of the nanoreactor. The inner hydrophilic silica cavity was modified by two types of organosilanes, which not only created an amphiphilic cavity environment but also acted as an anchor to mobilize PMo12. As the POM nanoreactor had the hydrophilic@hydrophobic SiO2@C shell and an amphiphilic cavity, both dibenzothiophene (DBT) and H2O2 could smoothly diffuse into the nanosized cavity, where the DBT was effectively oxidized (conversion: >99%) by the immobilized PMo12 under mild conditions. Importantly, the control experiments indicated that the confined effect of nanoreactor, amphiphilic SiO2@C double-shell, unique cavity environment, and mesoporous channels accounted for an excellent catalytic performance. Moreover, the nanoreactor was robust and could be reused for five cycles without loss of activity.
UR - http://www.scopus.com/inward/record.url?scp=85089615495&partnerID=8YFLogxK
U2 - 10.1039/d0nr03951a
DO - 10.1039/d0nr03951a
M3 - Article
C2 - 32749430
AN - SCOPUS:85089615495
SN - 2040-3364
VL - 12
SP - 16586
EP - 16595
JO - Nanoscale
JF - Nanoscale
IS - 31
ER -