Abstract
The quantum phase transition caused by regulating the electronic correlation in strongly correlated quantum materials has been a research hotspot in condensed matter science. Herein, a photon-induced quantum phase transition from the Kondo-Mott insulating state to the low temperature metallic one accompanying with the magnetoresistance changing from negative to positive in the infinite-layer NdNiO2 films is reported, where the antiferromagnetic coupling among the Ni1+ localized spins and the Kondo effect are effectively suppressed by manipulating the correlation of Ni-3d and Nd-5d electrons under the photoirradiation. Moreover, the critical temperature Tc of the superconducting-like transition exhibits a dome-shaped evolution with the maximum up to ≈42 K, and the electrons dominate the transport process proved by the Hall effect measurements. These findings not only make the photoinduction a promising way to control the quantum phase transition by manipulating the electronic correlation in Mott-like insulators, but also shed some light on the possibility of the superconducting in electron-doped nickelates.
Original language | English |
---|---|
Article number | 2304146 |
Journal | Small |
Volume | 19 |
Issue number | 43 |
DOIs | |
Publication status | Published - 25 Oct 2023 |
Externally published | Yes |
Keywords
- infinite-layer nickelates
- Mott-like insulators
- phase transition
- photoinduction
- superconducting-like transition