Perturbation theory for quasinilpotents in Banach algebras

Xin Wang, Peng Cao*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 3
see details

Abstract

In this paper, we prove the following result by perturbation technique. If q is a quasinilpotent element of a Banach algebra and spectrum of p + q for any other quasinilpotent p contains at most n values then qn = 0. Applications to C* algebras are given.

Original languageEnglish
Article number1163
JournalMathematics
Volume8
Issue number7
DOIs
Publication statusPublished - Jul 2020

Keywords

  • Finite spectrum
  • Perturbation theory
  • Quasinilpotent elements
  • Socle

Fingerprint

Dive into the research topics of 'Perturbation theory for quasinilpotents in Banach algebras'. Together they form a unique fingerprint.

Cite this

Wang, X., & Cao, P. (2020). Perturbation theory for quasinilpotents in Banach algebras. Mathematics, 8(7), Article 1163. https://doi.org/10.3390/math8071163