Abstract
Let σ be an endomorphism of the free group on two generators and Φσ the trace map associated with σ. A polynomial P is said to be periodic for σ if, for some positive integer n, it is invariant under Φσn, i.e., P ○ Φσn = P. In this note we study the structure of the ring of periodic polynomials for σ.
Original language | English |
---|---|
Pages (from-to) | 572-582 |
Number of pages | 11 |
Journal | Bulletin des Sciences Mathematiques |
Volume | 131 |
Issue number | 6 |
DOIs | |
Publication status | Published - Sept 2007 |
Keywords
- Free groups
- Fricke characters
- Trace maps
Fingerprint
Dive into the research topics of 'Periodic polynomial of trace maps'. Together they form a unique fingerprint.Cite this
Liu, Q. H., Peyrière, J., & Wen, Z. Y. (2007). Periodic polynomial of trace maps. Bulletin des Sciences Mathematiques, 131(6), 572-582. https://doi.org/10.1016/j.bulsci.2006.04.004