Periodic polynomial of trace maps

Qing Hui Liu, Jacques Peyrière*, Zhi Ying Wen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Let σ be an endomorphism of the free group on two generators and Φσ the trace map associated with σ. A polynomial P is said to be periodic for σ if, for some positive integer n, it is invariant under Φσn, i.e., P ○ Φσn = P. In this note we study the structure of the ring of periodic polynomials for σ.

Original languageEnglish
Pages (from-to)572-582
Number of pages11
JournalBulletin des Sciences Mathematiques
Volume131
Issue number6
DOIs
Publication statusPublished - Sept 2007

Keywords

  • Free groups
  • Fricke characters
  • Trace maps

Fingerprint

Dive into the research topics of 'Periodic polynomial of trace maps'. Together they form a unique fingerprint.

Cite this

Liu, Q. H., Peyrière, J., & Wen, Z. Y. (2007). Periodic polynomial of trace maps. Bulletin des Sciences Mathematiques, 131(6), 572-582. https://doi.org/10.1016/j.bulsci.2006.04.004