Pattern-structure diffusion for multi-task learning

Ling Zhou, Zhen Cui*, Chunyan Xu, Zhenyu Zhang, Chaoqun Wang, Tong Zhang, Jian Yang

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

70 Citations (Scopus)

Abstract

Inspired by the observation that pattern structures high-frequently recur within intra-task also across tasks, we propose a pattern-structure diffusion (PSD) framework to mine and propagate task-specific and task-across pattern structures in the task-level space for joint depth estimation, segmentation and surface normal prediction. To represent local pattern structures, we model them as small-scale graphlets1, and propagate them in two different ways, i.e., intra-task and inter-task PSD. For the former, to overcome the limit of the locality of pattern structures, we use the high-order recursive aggregation on neighbors to multiplicatively increase the spread scope, so that long-distance patterns are propagated in the intra-task space. In the inter-task PSD, we mutually transfer the counterpart structures corresponding to the same spatial position into the task itself based on the matching degree of paired pattern structures therein. Finally, the intra-task and inter-task pattern structures are jointly diffused among the task-level patterns, and encapsulated into an end-to-end PSD network to boost the performance of multi-task learning. Extensive experiments on two widely-used benchmarks demonstrate that our proposed PSD is more effective and also achieves the state-of-the-art or competitive results.

Original languageEnglish
Article number9156734
Pages (from-to)4513-4522
Number of pages10
JournalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOIs
Publication statusPublished - 2020
Externally publishedYes
Event2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, United States
Duration: 14 Jun 202019 Jun 2020

Fingerprint

Dive into the research topics of 'Pattern-structure diffusion for multi-task learning'. Together they form a unique fingerprint.

Cite this