Parameterized Cost Volume for Stereo Matching

Jiaxi Zeng, Chengtang Yao, Lidong Yu, Yuwei Wu*, Yunde Jia

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)

Abstract

Stereo matching becomes computationally challenging when dealing with a large disparity range. Prior methods mainly alleviate the computation through dynamic cost volume by focusing on a local disparity space, but it requires many iterations to get close to the ground truth due to the lack of a global view. We find that the dynamic cost volume approximately encodes the disparity space as a single Gaussian distribution with a fixed and small variance at each iteration, which results in an inadequate global view over disparity space and a small update step at every iteration. In this paper, we propose a parameterized cost volume to encode the entire disparity space using multi-Gaussian distribution. The disparity distribution of each pixel is parameterized by weights, means, and variances. The means and variances are used to sample disparity candidates for cost computation, while the weights and means are used to calculate the disparity output. The above parameters are computed through a JS-divergence-based optimization, which is realized as a gradient descent update in a feed-forward differential module. Experiments show that our method speeds up the runtime of RAFT-Stereo by 4 ~ 15 times, achieving real-time performance and comparable accuracy. The code is available at https://github.com/jiaxiZeng/Parameterized-Cost-Volume-for-Stereo-Matching.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages18301-18311
Number of pages11
ISBN (Electronic)9798350307184
DOIs
Publication statusPublished - 2023
Event2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
Duration: 2 Oct 20236 Oct 2023

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Country/TerritoryFrance
CityParis
Period2/10/236/10/23

Fingerprint

Dive into the research topics of 'Parameterized Cost Volume for Stereo Matching'. Together they form a unique fingerprint.

Cite this