Abstract
Solid-state electrolyte is a potential choice to handle the safety risks of lithium mental batteries. However, the thermal stability of solid-state lithium metal batteries at practical working conditions is few explored. We investigated the thermal features of 3.8-Ah lithium-LiNi0.5Co0.2Mn0.3O2 pouch cells based on Li6PS5Cl electrolyte. The solid-state lithium metal battery without thermal runaway is obtained at 0% state-of-charge due to the high thermal stability between lithium and Li6PS5Cl. There is significant heat generation between oxygen induced by the decomposition of cathode and Li6PS5Cl in the 100% state-of-charge cell after 275.5 °C, which directly leads to the thermal runway. The reaction of electrolytes with cathodes is preferential to that with lithium metal occurring after 302.4 °C. The excellent thermal performance of solid-state lithium metal batteries has been strongly proven benefiting from the intrinsically high thermal stability of lithium metal anode against Li6PS5Cl electrolyte and the released oxygen.
Original language | English |
---|---|
Article number | 100279 |
Journal | eTransportation |
Volume | 18 |
DOIs | |
Publication status | Published - Oct 2023 |
Keywords
- Battery safety
- Lithium argyrodites LiPSCl
- Lithium metal anode
- Lithium metal pouch cell
- Sulfide solid-state electrolyte
- Thermal runaway