Abstract
Single-cell lineage tracing provides crucial insights into the fates of individual cells. Single-cell RNA sequencing (scRNA-seq) is commonly applied in modern biomedical research, but genetics-based lineage tracing for scRNA-seq data is still unexplored. Variant calling from scRNA-seq data uniquely suffers from “expressional drop-outs,” including low expression and allelic bias in gene expression, which presents significant obstacles for lineage reconstruction. We introduce SClineager, which infers accurate evolutionary lineages from scRNA-seq data by borrowing information from related cells to overcome expressional drop-outs. We systematically validate SClineager and show that genetics-based lineage tracing is applicable for single-cell-sequencing studies of both tumor and non-tumor tissues using SClineager. Overall, our work provides a powerful tool that can be applied to scRNA-seq data to decipher the lineage histories of cells and that could address a missing opportunity to reveal valuable information from the large amounts of existing scRNA-seq data.
Original language | English |
---|---|
Article number | 108589 |
Journal | Cell Reports |
Volume | 34 |
Issue number | 1 |
DOIs | |
Publication status | Published - 5 Jan 2021 |
Externally published | Yes |
Keywords
- drop-out
- genetics
- lineage tracing
- scRNA-seq