Origin of nonequilibrium 1/: F noise in solid-state nanopores

Shihao Su, Xun Guo, Yanjun Fu, Yanbo Xie, Xinwei Wang, Jianming Xue

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Nanopore devices are applied in many fields such as molecular sensing and DNA sequencing, and the detection precision is primarily determined by 1/f noise. The mechanism of 1/f noise in nanopores is still not clearly understood, especially the nonequilibrium 1/f noise in rectifying nanopores. Hereby, we propose that 1/f noise in solid-state nanopores originates from the electrolyte ion trapping-detrapping process occurring on the inner surface of the nanopores, which can nonlinearly affect the ion number inside the rectifying nanopores due to the specific ion enrichment/depletion effect. Our model can not only quantitatively explain the nonlinear dependence of 1/f noise on the applied voltage, i.e., the nonequilibrium 1/f noise, for current rectifying nanopores, but also provide a unified explanation on the influence of the electrolyte concentration, pH value, and geometry of the nanopores. From our model, we observe a new flattening phenomenon of 1/f noise in conical nanopores, and this is further confirmed by our experimental results. Our research can be helpful in understanding and reducing 1/f noise in other nanopore devices, especially where the enrichment or depletion of ions exists.

Original languageEnglish
Pages (from-to)8975-8981
Number of pages7
JournalNanoscale
Volume12
Issue number16
DOIs
Publication statusPublished - 28 Apr 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Origin of nonequilibrium 1/: F noise in solid-state nanopores'. Together they form a unique fingerprint.

Cite this