Abstract
P2Y12 antagonists are widely used as antiplatelet agents for the prevention and treatment of arterial thrombosis. Based on the scaffold of a known P2Y12 antagonist AZD1283, a series of novel bicyclic pyridine derivatives were designed and synthesized. The cyclization of the ester substituent on the pyridine ring to the ortho-methyl group led to lactone analogues of AZD1283 that showed significantly enhanced metabolic stability in subsequent structure-pharmacokinetic relationship studies. The metabolic stability was further enhanced by adding a 4-methyl substituent to the piperidinyl moiety. Compound 58l displayed potent inhibition of platelet aggregation in vitro as well as antithrombotic efficacy in a rat ferric chloride model. Moreover, 58l showed a safety profile that was superior to what was observed for clopidogrel in a rat tail-bleeding model. These results support the further evaluation of compound 58l as a promising drug candidate.
Original language | English |
---|---|
Pages (from-to) | 3088-3106 |
Number of pages | 19 |
Journal | Journal of Medicinal Chemistry |
Volume | 62 |
Issue number | 6 |
DOIs | |
Publication status | Published - 28 Mar 2019 |
Externally published | Yes |